Geothermal Fluids Thermophysical Database for Scientific and Technological Applications

  • Ильмутдин [Ilmutdin] Магомедович [M.] Абдулагатов [Abdulagatov]
  • Гасан [Gasan] Басирович [B.] Бадавов [Badavov]
Keywords: geothermal fluids, vibrating tube densitometer, density, speed of sound, viscosity, heat capacity, thermal diffusivity, enthalpy

Abstract

The development of geothermal production facilities that use thermal fluid at high temperatures and production rates requires accurate data on geothermal brine thermophysical properties. Geothermal fluid samples taken from five operating fields in the Republic of Dagestan, including the Makhachkala, Thernair, Izberbash, Kizlyar, and Kayakent deposits, have been studied at the Institute of Technical Thermodynamics, University of Rostock (Germany). The article presents an analysis of the methods and results of measuring the geothermal fluid thermophysical properties, namely, thermal diffusivity, thermal conductivity, viscosity, heat capacity, speed of sound, and density, in a wide temperature range from 278 to 343 K at atmospheric pressure. In addition, the derived thermodynamic properties (enthalpy, entropy, compressibility, thermal expansion coefficient, etc.) obtained from the authors own original investigations have been calculated. The values of thermophysical properties measured at atmospheric pressure can be used as reference data for predicting the properties at high pressures.

Information about authors

Ильмутдин [Ilmutdin] Магомедович [M.] Абдулагатов [Abdulagatov]

Dr.Sci. (Techn.), Professor, Head of Thermophysics of Renewable Energy Laboratory of the Institute of Geothermal and Renewable Energy Problems — Branch of the Joint Institute of High Temperatures of the Russian Academy of Sciences; Head of the Physical Chemistry Dept., Dagestan State University, e-mail: ilmutdina@gmail.com

Гасан [Gasan] Басирович [B.] Бадавов [Badavov]

Senior Researcher of the Energy Laboratory of the Institute of Geothermal and Renewable Energy Problems — Branch of the Joint Institute of High Temperatures of the Russian Academy of Sciences, e-mail: lotos155@yandex.ru

References

1. McKibbin R., McNabb A. Mathematical Modeling the Phase Boundaries and Fluid Properties of the System H2O+NaCl+CO2 // Proc. 17th New Zealand Geothermal Workshop. University of Auckland, 1995. Pp. 255—262.
2. Palliser Ch., McKibbin R.A. Model for Deep Geothermal Brines. Ch. II: Thermodynamic Properties-density // Transport in Porous Medias. 1998. V. 33. Pp. 129—154.
3. Palliser Ch. A Model for Deep Geothermal Brines: State Space Description and Thermodynamic Properties. Palmer North: Massey University, 1998.
4. Dittman G.L. Calculation of Brine Properties. Rep. UCID 17406 Lawrence Livermore Laboratory, 1977.
5. Potter R.W., Haas J.L.Jr. A Model for The Calculation of the Thermodynamic Properties of Geothermal Fluids // Trans. Geothermal Resources Council. 1977. V. 1. Pp. 243—244.
6. Wahl E.F. Geothermal Energy Utilization. N.-Y.: John Wiley & Sons, 1977.
7. Horvath A.L. Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation Methods and Correlation Methods. N.-Y.: Halsted Press, 1985.
8. Abdulagatov I.M., Abdulagatov A.I., Kamalov A.N. Thermophyscal Properties of Pure Fluids and Aqueous Systems at High Temperatures and High Pressures. N.-Y.: Begell House Inc., 2005.
9. Abdulagatov I.M., Assael M., 2009. Viscosity. Hydrothermal Properties of Materials. Experimental Data on Aqueous Phase Equilibria and Solution Properties at Elevated Temperatures and Pressures London: John Wiley & Sons, 2009. Pp. 249—270.
10. Saadat A. e. a. 2008. Niedertemperaturstromerzeugung-systembetrachtung Unterberücksichtigung des Eigenbedarfs // Geothermische Technologien: Vom Reservoir zur Kilowattstunde. Tagung Potsdam: VDI-Gesellschfat Energietechnik, 2008. Pp. 155—167.
11. Francke H., Thorade M. Density and Viscosity of Brine: an Overview from a Process Engineer’s Perspective // Chem. Erde, Geochem. 2010. V. 70. Pp. 23—32.
12. Dolejs D., Manning C.E. Thermodynamic Model for Mineral Solubility in Aqueous Fluids: Theory, Calibration and Application to Model Fluid-flow Systems // Geofluids. 2010. V. 10. Pp. 20—40.
13. Francke H., Kraume M., Saadat A. Thermal-hydraulic Measurements and Modelling of the Brine Circuit in a Geothermal Well // Envir. Earth Sci. 2013. V. 70. Pp. 3481—3495.
14. Battistelli A., Calore C., Pruess K. A Fluid Property Module for the TOUGH2 Simulator for Saline Brines with Non-condensible Gas // Proc. 18th Workshop on Geothermal Reservoir Eng. Stanford University, 1993. Pp. 249—259.
15. Battistelli A. Improving the Treatment of Saline Brines in EWASG for the Simulation of Hydrothermal Systems // Proc. TOUGH Symp. Berkeley, 2012. Pp. 1—9.
16. Piwinskii A.J., Netherton R., Chan M. Viscosity of Brines from the Salton Sea Geothermal Field. Rep. UCRL 52344. University of California, 1977.
17. McCain W.D.Jr. Reservoir Fluid Property Correlations State of Art // Soc. Petroleum Eng. Res. Eng., 1991. Pp. 266—272.
18. Milsch H., Kallenberg B., Holzhauer J., Frick S., Blöcher G. Mixing-rules of Viscosity, Electrical Conductivity and Density of NaCl, KCl, and CaCl2 Aqueous Solutions Derived from Experiments // Proc. EAGE General Assambly. Vienna, 2010.
19. Møller P.I.N., Weare J.H. Model of Geothermal Brine Chemistry. Final Rep., 1999.
20. Ostermann R.D., Paranjpe S.G., Godbole S.P., Kamath V.A. The Effect of Dissolved Gas on Geothermal Brine Viscosity // Proc. 56th Ann. Soc. Petrol. Eng. California Regional Meeting, 1986. Pp. 381—389.
21. Palliser Ch., McKibbin R. A Model for Deep Geothermal Brines. Ch. III: Thermodynamic Properties-enthalpy and Viscosity // Transport in Porous Medias. 1998. V. 33. Pp. 155—171.
22. Alkan H., Babadagli T., Satman A. The Prediction of the PVT/Phase Behavior of the Geothermal Fluid Mixtures // Proc. World Geothermal Congress, 1995. Pp. 1659—1665.
23. Champel B. Discrepancies in Brine Density Databases at Geothermal Conditions // Geothermics. 2006. V. 35. Pp. 600—606.
24. Lee K.S. Comparison of Correlation Equations for Estimating Brine Properties under High Pressure and Temperature Condition // Geosystem Eng. 2000. V. 3. Pp. 113—116.
25. Spycher N., Pruess K. A Model for Thermo Physical Properties of CO2-brine Mixtures at Elevated Temperatures and Pressures // Proc. 36th Workshop on Geothermal Reservoir Eng. Stanford, 2011.
26. Ershaghi I., Abdassah D., Bonakdar M.R., Ahmad S. Estimation of Geothermal Brine Viscosity // J. Pet. Tech. 1983. V. 35. Pp. 621—628.
27. Adams J.J., Bachu S. Equations of States for Basin Geofluids: Algorithm Review and Intercomparison for Brines // Geofluids. 2002. V. 2. Pp. 257—271.
28. Oldenburg C., Pruess K., Lippmann M. Heat and Mass Transfer in Hypersaline Geothermal Systems // Proc. World Geothermal Congress, 1995. Pp. 1647—1652.
29. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids from South Russia Geothermal Field // Возобновляемая энергетика: проблемы и перспективы: Материалы III Междунар. конф. Махачкала: АЛЕФ, 2014. С. 35—39.
30. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids from South Russia Geothermal Field. Pt. II // Appl. Geochemistry. 2016. V. 69. Pp. 28—41.
31. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids // J. Chem. Eng. Data. 2016. V. 61. Pp. 234—246.
32. Wagner W., Pruß A. New International Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use // J. Phys. Chem. Ref. Data. 2002. V. 31. Pp. 387—535.
33. Schröder E. e. a. Design and Test of a New Calorimeter for Online Detection of Geothermal Water Heat Capacity // Geothermics. 2015. V. 53. Pp. 202—212.
---
Для цитирования: Абдулагатов И.М., Бадавов Г.Б. Теплофизическая база данных геотермальных флюидов для научных и технологических применений // Вестник МЭИ. 2023. № 1. С. 52—64. DOI: 10.24160/1993-6982-2023-1-52-64.
#
1. McKibbin R., McNabb A. Mathematical Modeling the Phase Boundaries and Fluid Properties of the System H2O+NaCl+CO2. Proc. 17th New Zealand Geothermal Workshop. University of Auckland, 1995:255—262.
2. Palliser Ch., McKibbin R.A. Model for Deep Geothermal Brines. Ch. II: Thermodynamic Properties-density. Transport in Porous Medias. 1998;33:129—154.
3. Palliser Ch. A Model for Deep Geothermal Brines: State Space Description and Thermodynamic Properties. Palmer North: Massey University, 1998.
4. Dittman G.L. Calculation of Brine Properties. Rep. UCID 17406 Lawrence Livermore Laboratory, 1977.
5. Potter R.W., Haas J.L.Jr. A Model for The Calculation of the Thermodynamic Properties of Geothermal Fluids. Trans. Geothermal Resources Council. 1977;1:243—244.
6. Wahl E.F. Geothermal Energy Utilization. N.-Y.: John Wiley & Sons, 1977.
7. Horvath A.L. Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation Methods and Correlation Methods. N.-Y.: Halsted Press, 1985.
8. Abdulagatov I.M., Abdulagatov A.I., Kamalov A.N. Thermophyscal Properties of Pure Fluids and Aqueous Systems at High Temperatures and High Pressures. N.-Y.: Begell House Inc., 2005.
9. Abdulagatov I.M., Assael M., 2009. Viscosity. Hydrothermal Properties of Materials. Experimental Data on Aqueous Phase Equilibria and Solution Properties at Elevated Temperatures and Pressures London: John Wiley & Sons, 2009:249—270.
10. Saadat A. e. a. 2008. Niedertemperaturstromerzeugung-systembetrachtung Unterberücksichtigung des Eigenbedarfs. Geothermische Technologien: Vom Reservoir zur Kilowattstunde. Tagung Potsdam: VDI-Gesellschfat Energietechnik, 2008:155—167.
11. Francke H., Thorade M. Density and Viscosity of Brine: an Overview from a Process Engineer’s Perspective. Chem. Erde, Geochem. 2010;70:23—32.
12. Dolejs D., Manning C.E. Thermodynamic Model for Mineral Solubility in Aqueous Fluids: Theory, Calibration and Application to Model Fluid-flow Systems. Geofluids. 2010;10:20—40.
13. Francke H., Kraume M., Saadat A. Thermal-hydraulic Measurements and Modelling of the Brine Circuit in a Geothermal Well. Envir. Earth Sci. 2013;70:3481—3495.
14. Battistelli A., Calore C., Pruess K. A Fluid Property Module for the TOUGH2 Simulator for Saline Brines with Non-condensible Gas. Proc. 18th Workshop on Geothermal Reservoir Eng. Stanford University, 1993:249—259.
15. Battistelli A. Improving the Treatment of Saline Brines in EWASG for the Simulation of Hydrothermal Systems. Proc. TOUGH Symp. Berkeley, 2012:1—9.
16. Piwinskii A.J., Netherton R., Chan M. Viscosity of Brines from the Salton Sea Geothermal Field. Rep. UCRL 52344. University of California, 1977.
17. McCain W.D.Jr. Reservoir Fluid Property Correlations State of Art. Soc. Petroleum Eng. Res. Eng., 1991:266—272.
18. Milsch H., Kallenberg B., Holzhauer J., Frick S., Blöcher G. Mixing-rules of Viscosity, Electrical Conductivity and Density of NaCl, KCl, and CaCl2 Aqueous Solutions Derived from Experiments. Proc. EAGE General Assambly. Vienna, 2010.
19. Møller P.I.N., Weare J.H. Model of Geothermal Brine Chemistry. Final Rep., 1999.
20. Ostermann R.D., Paranjpe S.G., Godbole S.P., Kamath V.A. The Effect of Dissolved Gas on Geothermal Brine Viscosity. Proc. 56th Ann. Soc. Petrol. Eng. California Regional Meeting, 1986:381—389.
21. Palliser Ch., McKibbin R. A Model for Deep Geothermal Brines. Ch. III: Thermodynamic Properties-enthalpy and Viscosity. Transport in Porous Medias. 1998;33:155—171.
22. Alkan H., Babadagli T., Satman A. The Prediction of the PVT/Phase Behavior of the Geothermal Fluid Mixtures. Proc. World Geothermal Congress, 1995:1659—1665.
23. Champel B. Discrepancies in Brine Density Databases at Geothermal Conditions. Geothermics. 2006;35:600—606.
24. Lee K.S. Comparison of Correlation Equations for Estimating Brine Properties under High Pressure and Temperature Condition. Geosystem Eng. 2000;3:113—116.
25. Spycher N., Pruess K. A Model for Thermo Physical Properties of CO2-brine Mixtures at Elevated Temperatures and Pressures. Proc. 36th Workshop on Geothermal Reservoir Eng. Stanford, 2011.
26. Ershaghi I., Abdassah D., Bonakdar M.R., Ahmad S. Estimation of Geothermal Brine Viscosity. J. Pet. Tech. 1983;35:621—628.
27. Adams J.J., Bachu S. Equations of States for Basin Geofluids: Algorithm Review and Intercomparison for Brines. Geofluids. 2002;2:257—271.
28. Oldenburg C., Pruess K., Lippmann M. Heat and Mass Transfer in Hypersaline Geothermal Systems. Proc. World Geothermal Congress, 1995:1647—1652.
29. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids from South Russia Geothermal Field. Vozobnovlyaemaya Energetika: Problemy i Perspektivy: Materialy III Mezhdunar. Konf. Makhachkala: ALEF, 2014:35—39.
30. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids from South Russia Geothermal Field. Pt. II. Appl. Geochemistry. 2016;69:28—41.
31. Abdulagatov I.M., Akhmedova-Azizova L.A., Aliev R.M., Badavov G.B. Measurements of the Density, Speed of Sound, Viscosity and Derived Thermodynamic Properties of Geothermal Fluids. J. Chem. Eng. Data. 2016;61:234—246.
32. Wagner W., Pruß A. New International Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data. 2002;31:387—535.
33. Schröder E. e. a. Design and Test of a New Calorimeter for Online Detection of Geothermal Water Heat Capacity. Geothermics. 2015;53:202—212.
---
For citation: Abdulagatov I.M., Badavov G.B. Geothermal Fluids Thermophysical Database for Scientific and Technological Applications. Bulletin of MPEI. 2023;1:52—64. (in Russian). DOI: 10.24160/1993-6982-2023-1-52-64.
Published
2022-10-24
Section
Energy Systems and Complexes (2.4.5)