Using the Low-grade Heat of Watercourses for Heat Pump Based Heat Supply Systems under the Conditions of Central Russia

  • Валерий [Valeriy] Владимирович [V.] Харченко [Kharchenko]
  • Арсений [Arseniy] Олегович [O.] Сычёв [Sychev]
Keywords: heat pump, heat pump based heat supply system, watercourse, heat exchanger, low-grade heat

Abstract

The selection of a low-grade heat source for setting up a heat pump based heat supply system is considered, and the prospects of using the heat of open watercourses for this purpose are shown. The design of a floating heat exchanger for a watercourse is described, which was used to construct a heat pump system for heating a country house in the Moscow region. The results of studying the heat exchanger performance efficiency are presented. To analyze the prospects for a widespread introduction of such systems under the conditions of central Russia, water temperature measurements were carried out in a number of Moscow region rivers in winter. A mobile installation for carrying out experimental field studies of the heat extraction process from watercourses has been constructed. The results of the water to heat carrier heat transfer coefficient measurements under the heat transfer surface icing conditions are given. The study results have confirmed good prospects of using heat pump systems for the year-round heat supply purposes.

Information about authors

Валерий [Valeriy] Владимирович [V.] Харченко [Kharchenko]

Dr.Sci. (Techn.), Professor, Chief Scientific Officer of Federal Scientific Agroengineering Center «VIM», Moscow, e-mail: kharval@mail.ru

Арсений [Arseniy] Олегович [O.] Сычёв [Sychev]

Ph.D. (Techn.), Senior Researcher of Federal Scientific Agroengineering Center «VIM», Moscow, e-mail: arsenikus@yandex.ru

References

1. Samarin G.N. e. a. Optimization of Power and Economic Indexes of a Farm for the Maintenance of Cattle // Advances in Intelligent Systems and Computing. 2020. V. 1072. Pp. 679—689.
2. Тихомиров Д.А., Хименко А.В, Кузьмичев А.В. Напольный обогрев поросят с применением термоэлектрического теплового насоса // Техника и оборудование для села. 2021. № 9(291). С. 28—32.
3. Zhang C., Zhuang Z., Huang L., Li X., Li G., Sun D. Application Prospect Analysis of the Surface Water Source Heat-pump in China // Renewable Energy Resources and a Greener Future. 2006. V. VIII-9-1.
4. Теплообменник для использования тепла рек и озер [Электрон. ресурс] www.heatpumps.spb.ru/news/news_post/teploobmennik-dlya-ispolzovaniya-tepla-rek-i-ozer (дата обращения 25.03.2022).
5. Сычёв А.О., Харченко В.В. Пути повышения технико-экономических показателей теплонасосных установок, использующих теплоту поверхностных вод // Альтернативная энергетика и экология. 2015. № 10—11. С. 84—90.
6. Пат. № 158486 РФ. Устройство для отбора теплоты от поверхностного водотока / Харченко В.В., Сычёв А.О. // Бюл. изобрет. 2016. № 1.
7. Сычёв А.О., Харченко В.В. Оптимизация состава теплоносителя для применения в низкотемпературных контурах теплонасосных установок // Инновации в сельском хозяйстве. 2018. № 3(28). С. 225—231.
8. Kharchenko V., Sychov A., De Angelis P.L., Fiore U. Monitoring System of a Heat Pump Installation for Heating a Rural House Using Low-grade Heat from a Surface Watercourse // J. Sens. Actuator Netw. 2020. V. 9(1). Pp. 11—27.
9. Sychov A., Kharchenko V., Vasant P., Uzakov G. Application of Various Computer Tools for the Optimization of the Heat Pump Heating Systems with Extraction of Low-grade Heat from Surface Watercourses // Advances in Intelligent Systems and Computing. 2019. V. 866. Pp. 310—319.
10. Zheng W., Zhang H., You S., Ye T. Numerical and Experimental Investigation of a Helical Coil Heat Exchanger for Seawater-source Heat Pump in Cold Region // International J. Heat and Mass Transfer. 2016. V. 96. Pp. 1—10.
11. Сычёв А.О. Снижение эффективности отбора низкопотенциальной теплоты от водной среды в условиях обледенения теплообменной поверхности // Инновации в сельском хозяйстве. 2016. № 5(20). С. 310—315.
---
Для цитирования: Харченко В.В., Сычёв А.О. Использование низкопотенциальной теплоты водотоков в системах теплонасосного теплоснабжения в условиях средней полосы России // Вестник МЭИ. 2022. № 4. С. 108—116. DOI: 10.24160/1993-6982-2022-4-108-116
#
1. Samarin G.N. e. a. Optimization of Power and Economic Indexes of a Farm for the Maintenance of Cattle. Advances in Intelligent Systems and Computing. 2020;1072:679—689.
2. Tikhomirov D.A., Khimenko A.V, Kuz'michev A.V. Napol'nyy Obogrev Porosyat s Primeneniem Termoelektricheskogo Teplovogo Nasosa. Tekhnika i Oborudovanie dlya Sela. 2021;9(291):28—32. (in Russian).
3. Zhang C., Zhuang Z., Huang L., Li X., Li G., Sun D. Application Prospect Analysis of the Surface Water Source Heat-pump in China. Renewable Energy Resources and a Greener Future. 2006. V. VIII-9-1.
4. Teploobmennik dlya Ispol'zovaniya Tepla Rek i Ozer [Elektron. Resurs] www.heatpumps.spb.ru/news/news_post/teploobmennik-dlya-ispolzovaniya-tepla-rek-i-ozer (Data Obrashcheniya 25.03.2022). (in Russian).
5. Sychev A.O., Kharchenko V.V. Puti Povysheniya Tekhniko-ekonomicheskikh Pokazateley Teplonasosnykh Ustanovok, Ispol'zuyushchikh Teplotu Poverkhnostnykh Vod. Al'ternativnaya Energetika i Ekologiya. 2015;10—11:84—90. (in Russian).
6. Pat. № 158486 RF. Ustroystvo dlya Otbora Teploty ot Poverkhnostnogo Vodotoka. Kharchenko V.V., Sychev A.O. Byul. izobret. 2016;1. (in Russian).
7. Sychev A.O., Kharchenko V.V. Optimizatsiya Sostava Teplonositelya dlya Primeneniya v Nizkotemperaturnykh Konturakh Teplonasosnykh Ustanovok. Innovatsii v Sel'skom Khozyaystve. 2018;3(28):225—231. (in Russian).
8. Kharchenko V., Sychov A., De Angelis P.L., Fiore U. Monitoring System of a Heat Pump Installation for Heating a Rural House Using Low-grade Heat from a Surface Watercourse. J. Sens. Actuator Netw. 2020;9(1):11—27.
9. Sychov A., Kharchenko V., Vasant P., Uzakov G. Application of Various Computer Tools for the Optimization of the Heat Pump Heating Systems with Extraction of Low-grade Heat from Surface Watercourses. Advances in Intelligent Systems and Computing. 2019;866:310—319.
10. Zheng W., Zhang H., You S., Ye T. Numerical and Experimental Investigation of a Helical Coil Heat Exchanger for Seawater-source Heat Pump in Cold Region. International J. Heat and Mass Transfer. 2016;96:1—10.
11. Sychev A.O. Snizhenie Effektivnosti Otbora Nizkopotentsial'noy Teploty ot Vodnoy Sredy v Usloviyakh Obledeneniya Teploobmennoy Poverkhnosti. Innovatsii v Sel'skom Khozyaystve. 2016;5(20):310—315. (in Russian).
---
For citation: Kharchenko V.V., Sychev A.O. Using the Low-grade Heat of Watercourses for Heat Pump Based Heat Supply Systems under the Conditions of Central Russia. Bulletin of MPEI. 2022;4:108—116. (in Russian). DOI: 10.24160/1993-6982-2022-4-108-116
Published
2022-03-10
Section
Renewable Energy Installations (05.14.08)