Polymeric Insulation Systems in High Voltage Engineering
Abstract
The aim of the study is to consider the possibilities of developing high-voltage technologies with the use of polymeric insulation taking into account further prospects of its application.
The use of various types of polymers starting from the 19th century is reviewed. The types of equipment involving the use of high-voltage polymeric insulation and the history of their development are described in detail. The presented results demonstrate the widespread use of this type of insulation and allow the ways of its future use to be estimated.
Relatively low mechanical strength and heat resistance, and organic insulation susceptibility to atmospheric-induced degradation and ageing were among the main drawbacks hindering widespread use of polymeric materials in electric power engineering up to the mid 20th century. However, these shortcomings were overcome owing to the transition to composite materials.
With the development of various insulation manufacturing technologies involving the use of additions, epoxy compounds were obtained. This opened the possibility not only to increase the number of equipment types with polymeric insulation, but also to extend the nominal voltage ranges of devices, increase their service life, and decrease their cost.
Apart from reviewing the existing solutions for manufacturing and applying polymeric insulation, possible ways to improve them are studied. Thus, owing to improvement of manufacturing technologies and optimization of the compound composition, the occurrence of dangerous gas inclusions, cracks, and exfoliations larger than a few micrometers in size are minimized in polymeric insulation systems (partial discharges appear in such dislocations under the effect of voltage). When exposed to atmospheric air, moisture, acids and other chemically active components able to destruct the insulation may penetrate into gas interlayers.
Higher dielectric strength of insulation can be achieved by taking into account the quality of adhesion between the main compound and various elements (electrodes and other poured dielectrics).
References
2. Кульман А.Г. Общая химия. М.: Колос, 1968.
3. Поплавский А.М. Мал золотник, да дорог [Электрон. ресурс] www.energy-21.ru/images/statii/mal-zolotnik-da-dorog.pdf (дата обращения 01.11.2021).
4. Сухие трансформаторы с литой изоляцией [Электрон. ресурс] www.forte21.ru/f/3a/6b/bcae593ecfac_6390.pdf (дата обращения 18.11.2021).
5. Преимущества силовых трансформаторов с литой изоляцией [Электрон. ресурс] www.tdmetz.ru/articles/st-litaya-isolaciya/ (дата обращения 01.11.2021).
6. Методика испытания кабеля повышенным напряжением [Электрон. ресурс] www.bathmate.su/categories/svoimi-rukami/13149-ispytanija-v-objazatelьnom-porjadke-oformljajutsja.html (дата обращения 15.11.2021).
7. Даниелян Н.Г. Опыт применения литых токопроводов в России // Энергетика и промышленность России. 2014. № 7. С. 34—35.
8. Li P.H. e. a. Optimization for Epoxy // Paper Composites Insulated Tubular Bus Structure. Materials Sci. Forum. 2018. V. 922. Pp. 169—174.
9. Moskvichev E.V., Doronin S.V. Information Support of Mechanical Strength Analysis of Cast-resin Insulated Busbar Systems // Computational Technol. 2017. V. 22. No. 1. Pp. 48—54.
10. Комплектные и пофазноизолированные токопроводы с литой изоляцией [Электрон. ресурс] www.rauta-energy.ru/statji/94-tokoprovod-litoj-izolyatsii.html (дата обращения 10.10.2021).
11. Токопроводы серии sis с литой изоляцией [Электрон. ресурс] www.moselectro.ru/production/tokoprovody-s-litoy-izolyatsiey/tokoprovody-serii-ritz-sis-s-litoy-izolyatsiey/ (дата обращения 05.11.2021).
12. РАУТА-Энерго [Офиц. сайт] www.rauta-energy.ru/hikashop-menu-for-brands-listing/product/download/file_id-485.html (дата обращения 10.11.2021).
13. Varivodov V.N., Kovalev D.I., Golubev D.V., Mirzabekyan G.Z. Development of Insulation Systems for High-voltage Busbars with Solid Insulation // Russian Electrical Eng. 2021. V. 92. Pp. 185—192.
14. DIN EN 50181:2010. Plug-in Type Bushings above 1 KV Up To 52 KV and from 250 A To 2,50 KA for Equipment Other Than Liquid Filled Transformers.
15. Сканави Г.И. Физика диэлектриков (область сильных полей). М.: Физматлит, 1958.
16. Франц В. Пробой диэлектриков. М.: ИИЛ, 1961.
17. Вершинин Ю.Н. Электрический пробой твердых диэлектриков. Новосибирск: Наука, 1968.
18. Воробьев Г.А. Нарушение электрической прочности диэлектриков и их пробой. Томск: Изд-во Томского гос. ун-та, 1962.
19. Каргин В.А. Энциклопедия полимеров. Т. 3. Полиоксадиазолы — Я. М.: Сов. энциклопедия, 1977.
20. Liang M., Wong K.L. Electrical Performance of Epoxy Resin Filled with Micro Particles and Nanoparticles // Energy Proc. 2017. V. 110. Pp. 162—167.
21. Li Z., Okamoto K., Ohki Y., Tanaka T. Effects of Nano-filler Addition on Partial Discharge Resistance and Dielectric Breakdown Strength of Micro-Al2O3 Epoxy Composite // IEEE Trans. Dielectrics and Electrical Insulation. 2010. V. 17. No. 3. Pp. 653—661.
22. Tanaka T. Dielectric Nanocomposites with Insulating Properties // IEEE Trans. Dielectrics and Electrical Insulation. 2005. V. 12. No. 5. Pp. 914—928.
23. Sato J., Susumu K., Osamu S., Masaru M., Shimizu T., Homma M. Solid Insulated Switchgear and Investigation of Its Mechanical and Electrical Reliability // Electrical Eng. in Japan. 2011. V. 174. Pp. 28—36.
24. Varivodov V.N., Kovalev D.I., Krupenin, N.V., Khrenov S.I. Permissible Electrical-field Intensities in the Cast Epoxy Insulation of a 6- to 110-kV Switchgear // Russian Electrical Eng. 2018. V. 89. No. 5. Pp. 294—297.
25. Вариводов В.Н., Ковалев Д.И., Жуликов С.С., Голубев Д.В., Романов В.А. Предотвращение появления частичных разрядов в твердой изоляции высоковольтных токопроводов // Электротехника. 2021. № 8. C. 30—34.
26. Khan Q., Ahmad F., Khan A.A., Ahmad F. Assessment of Solid Insulating Material Using Partial Discharge Characteristics // Proc. Intern. Conf. Electrical, Electronics, and Optimization Techn. 2016. Pp. 1786—1789.
27. Morshuis P.H. Degradation of Solid Dielectrics Due to Internal Partial Discharge: Some Thoughts on Progress Made and Where to Go Now // Proc. IEEE Trans. Dielectrics and Electrical Insulation. 2005. V. 12. Pp. 905—913.
28. Morshuis P.H. Assessment of Dielectric Degradation by Ultra-wideband PD Detection // Proc. IEEE Trans. Dielectrics and Electrical Insulation. 1995. V. 2. Pp. 744—760.
29. Dolin A.P. Diagnostic Examination of Isolated Bus Ducts // Power Technol. and Eng. 2020. V. 54. Pp. 444—449.
30. Zhang L., Liang J., Hou X., Gao Y., Li J. The Partial Discharge Characteristics Study of Insulated Copper Bus Bar // Annual Rep. Conf. Electrical Insulation and Dielectric Phenomena. 2013. Pp. 1169—1172.
31. Varivodov V.N., Kovalev D.I., Zhulikov S.S, Golubev D.V., Romanov V.A., Mirzabekyan G.Z. Technological Aspects of the Use of Cast Polymer Insulation for High-voltage Switchgear and Busbars // Power Technol. and Eng. 2021. V. 54. Pp. 915—922.
---
For citation: Varivodov V.N., Kovalev D.I., Golubev D.V., Voronkova E.M. Polymeric Insulation Systems in High Voltage Engineering. Bulletin of MPEI. 2022;3:93—104. (in Russian). DOI: 10.24160/1993-6982-2022-3-93-104.
---
Работа выполнена при поддержке: Центра коллективного пользования с использованием научного оборудования ЦКП «Высоковольтный научно-исследовательский комплекс» в рамках проекта «Разработка токопроводов на основе новых композиционных материалов со встроенными цифровыми элементами интеллектуального управления» при поддержке гранта НИУ «МЭИ» на реализацию программ научных исследований «Энергетика», «Электроника, радиотехника и IT» и «Технологии индустрии 4.0 для промышленности и робототехника в 2020 — 2022 гг.»
#
1. Golubtsova V.A. Istoriya i Perspektivy Razvitiya Elektroizolyatsionnykh Materialov. M.: Gosenergoizdat, 1957. (in Russian).
2. Kul'man A.G. Obshchaya Khimiya. M.: Kolos, 1968. (in Russian).
3. Poplavskiy A.M. Mal Zolotnik, da Dorog [Elektron. Resurs] www.energy-21.ru/images/statii/mal-zolotnik-da-dorog.pdf (Data Obrashcheniya 01.11.2021). (in Russian).
4. Sukhie Transformatory s Litoy Izolyatsiey [Elektron. Resurs] www.forte21.ru/f/3a/6b/bcae593ecfac_6390.pdf (Data Obrashcheniya 18.11.2021). (in Russian).
5. Preimushchestva Silovykh Transformatorov s Litoy Izolyatsiey [Elektron. Resurs] www.tdmetz.ru/articles/st-litaya-isolaciya/ (Data Obrashcheniya 01.11.2021). (in Russian).
6. Metodika Ispytaniya Kabelya Povyshennym Napryazheniem [Elektron. Resurs] www.bathmate.su/categories/svoimi-rukami/13149-ispytanija-v-objazatel'nom-porjadke-oformljajutsja.html (Data Obrashcheniya 15.11.2021). (in Russian).
7. Danielyan N.G. Opyt Primeneniya Litykh Tokoprovodov v Rossii. Energetika i Promyshlennost' Rossii. 2014;7:34—35. (in Russian).
8. Li P.H. e. a. Optimization for Epoxy. Paper Composites Insulated Tubular Bus Structure. Materials Sci. Forum. 2018;922:169—174.
9. Moskvichev E.V., Doronin S.V. Information Support of Mechanical Strength Analysis of Cast-resin Insulated Busbar Systems. Computational Technol. 2017;22;1:48—54.
10. Komplektnye i Pofaznoizolirovannye Tokoprovody s Litoy Izolyatsiey [Elektron. Resurs] www.rauta-energy.ru/statji/94-tokoprovod-litoj-izolyatsii.html (Data Obrashcheniya 10.10.2021). (in Russian).
11. Tokoprovody Serii sis s Litoy Izolyatsiey [Elektron. Resurs] www.moselectro.ru/production/tokoprovody-s-litoy-izolyatsiey/tokoprovody-serii-ritz-sis-s-litoy-izolyatsiey/ (Data Obrashcheniya 05.11.2021). (in Russian).
12. RAUTA-Energo [Ofits. Sayt] www.rauta-energy.ru/hikashop-menu-for-brands-listing/product/download/file_id-485.html (Data Obrashcheniya 10.11.2021). (in Russian).
13. Varivodov V.N., Kovalev D.I., Golubev D.V., Mirzabekyan G.Z. Development of Insulation Systems for High-voltage Busbars with Solid Insulation. Russian Electrical Eng. 2021;92:185—192.
14. DIN EN 50181:2010. Plug-in Type Bushings above 1 KV Up To 52 KV and from 250 A To 2,50 KA for Equipment Other Than Liquid Filled Transformers.
15. Skanavi G.I. Fizika Dielektrikov (Oblast' Sil'nykh Poley). M.: Fizmatlit, 1958. (in Russian).
16. Frants V. Proboy Dielektrikov. M.: IIL, 1961. (in Russian).
17. Vershinin Yu.N. Elektricheskiy Proboy Tverdykh Dielektrikov. Novosibirsk: Nauka, 1968. (in Russian).
18. Vorob'ev G.A. Narushenie Elektricheskoy Prochnosti Dielektrikov i Ikh Proboy. Tomsk: Izd-vo Tomskogo Gos. Un-ta, 1962. (in Russian).
19. Kargin V.A. Entsiklopediya Polimerov. T. 3. Polioksadiazoly — Ya. M.: Sov. Entsiklopediya, 1977. (in Russian).
20. Liang M., Wong K.L. Electrical Performance of Epoxy Resin Filled with Micro Particles and Nanoparticles. Energy Proc. 2017;110:162—167.
21. Li Z., Okamoto K., Ohki Y., Tanaka T. Effects of Nano-filler Addition on Partial Discharge Resistance and Dielectric Breakdown Strength of Micro-Al2O3 Epoxy Composite. IEEE Trans. Dielectrics and Electrical Insulation. 2010;17;3:653—661.
22. Tanaka T. Dielectric Nanocomposites with Insulating Properties. IEEE Trans. Dielectrics and Electrical Insulation. 2005;12;5:914—928.
23. Sato J., Susumu K., Osamu S., Masaru M., Shimizu T., Homma M. Solid Insulated Switchgear and Investigation of Its Mechanical and Electrical Reliability. Electrical Eng. in Japan. 2011;174:28—36.
24. Varivodov V.N., Kovalev D.I., Krupenin, N.V., Khrenov S.I. Permissible Electrical-field Intensities in the Cast Epoxy Insulation of a 6- to 110-kV Switchgear. Russian Electrical Eng. 2018;89;5:294—297.
25. Varivodov V.N., Kovalev D.I., Zhulikov S.S., Golubev D.V., Romanov V.A. Predotvrashchenie Poyavleniya Chastichnykh Razryadov v Tverdoy Izolyatsii Vysokovol'tnykh Tokoprovodov. Elektrotekhnika. 2021;8:30—34. (in Russian).
26. Khan Q., Ahmad F., Khan A.A., Ahmad F. Assessment of Solid Insulating Material Using Partial Discharge Characteristics. Proc. Intern. Conf. Electrical, Electronics, and Optimization Techn. 2016:1786—1789.
27. Morshuis P.H. Degradation of Solid Dielectrics Due to Internal Partial Discharge: Some Thoughts on Progress Made and Where to Go Now. Proc. IEEE Trans. Dielectrics and Electrical Insulation. 2005;12:905—913.
28. Morshuis P.H. Assessment of Dielectric Degradation by Ultra-wideband PD Detection. Proc. IEEE Trans. Dielectrics and Electrical Insulation. 1995;2:744—760.
29. Dolin A.P. Diagnostic Examination of Isolated Bus Ducts. Power Technol. and Eng. 2020;54:444—449.
30. Zhang L., Liang J., Hou X., Gao Y., Li J. The Partial Discharge Characteristics Study of Insulated Copper Bus Bar. Annual Rep. Conf. Electrical Insulation and Dielectric Phenomena. 2013:1169—1172.
31. Varivodov V.N., Kovalev D.I., Zhulikov S.S, Golubev D.V., Romanov V.A., Mirzabekyan G.Z. Technological Aspects of the Use of Cast Polymer Insulation for High-voltage Switchgear and Busbars. Power Technol. and Eng. 2021;54:915—922.
---
For citation: Varivodov V.N., Kovalev D.I., Golubev D.V., Voronkova E.M. Polymeric Insulation Systems in High Voltage Engineering. Bulletin of MPEI. 2022;3:93—104. (in Russian). DOI: 10.24160/1993-6982-2022-3-93-104.
---
The work is executed at support:The Center for Collective Use with the Use of Scientific Equipment of the Central Research Center «High-voltage Research Complex» within the Framework of the Project «Development of Current Pipelines Based on New Composite Materials with Integrated Digital Elements of Intelligent Control» with the Support of a Grant from the NRU MPEI for the Implementation of Research Programs «Power Engineering», «Electronics, Radio Engineering and IT» and «Industry Technologies 4.0 for Industry and Robotics» in 2020 — 2022»