A Review of Design Solutions for Wind Power Plant Equipment
Abstract
The aim of the study is to find efficient solutions in wind energy engineering with a view to develop new designs of wind power plants featuring the best power performance indicators. The aim that had been set forth was achieved by selecting and analyzing the results reported in the relevant publications. The most promising technologies were incorporated into united designs and modeled in the Solid Works and Ansys software environments. The study results are described, and the development trends in the wind power plant construction technologies and ways of improving their performance indicators are formulated. They include: application of Magnus cylinders, alteration of blade design, addition of supplementary assemblies and components, application of transverse-axial wind turbines and air flow concentrators, use of measures to ensure a constant wind power plant power output regardless of the incident air flow velocity, and multirotor designs. New technical solutions in the field of windwheel designs for wind power plants are proposed: a counter rotor transverse-axial wind turbine with an air flow concentrator, a Magnus wind turbine with supplementary adjustable blades, and a transverse-axial wind turbine with adjustable diameter and height.
The obtained results can be used in studies in the field of wind energy engineering, for analyzing the publication activity on topics relating to renewable energy sources and wind power plants, in particular, for studying the state of the art in the field in writing research papers and dissertations related to wind power plant performance efficiency. The problems that may be faced during the subsequent use of the study results to combine individual trends that improve the efficiency in a single wind power plant to achieve its maximal possible efficiency are pointed out.
References
2. Глобальные энергетические тенденции 2020 [Электрон. ресурс] www.enerdata.ru/publications/reports-presentations/world-energy-trends.html (дата обращения 10.05.2021).
3. ГОСТ Р 51990—2002. Нетрадиционная энергетика. Ветроэнергетика. Установки ветроэнергетические.
4. Richmond-Navarro G. e. a. A Magnus Wind Turbine Power Model Based on Direct Solutions Using the Blade Element Momentum Theory and Symbolic Regression // IEEE Trans. Sustainable Energy. 2016. V. 8. No. 1. Pp. 425—430.
5. Bychkov N.M., Dovgal A.V., Sorokin A.M. Parametric Optimization of the Magnus Wind Turbine // Proc. Intern. Conf. Methods of Aerophysical Research. 2008. Pp. 1—5.
6. Pat. 12522538 USA. Magnus Type Wind Power Generator. Murakami N. 2010.
7. Demidova G.L. e. a. Magnus Wind Turbine: Finite Element Analysis and Control System // Proc. Intern. Symp. Power Electronics, Electrical Drives, Automation and Motion. 2020. Pp. 59—64.
8. Chetan S. e. a. Analysis of a New Horizontal Axes Wind Turbine with 6/3 blades // Proc. IEEE Intern. Conf. Automation, Quality and Testing, Robotics. 2018. Pp. 1—4.
9. Ragheb A., Ragheb M. Wind Turbine Gearbox Technologies // Proc. I Intern. Nuclear & Renewable Energy Conf. 2010. Pp. 1—8.
10. Newman B.G. Multiple Actuator-disc Theory for Wind Turbines // J. Wind Eng. and Industrial Aerodynamics. 1986. V. 24. No. 3. Pp. 215—225.
11. Shen W.Z. e. a. Analysis of Counter-rotating Wind Turbines // J. Physics: Conf. Series. IOP Publ. 2007. V. 75. No. 1. P. 012003.
12. Habash R.W.Y. e. a. Performance of a Contrarotating Small Wind Energy Converter // Intern. Scholarly Research Notices. 2011. Pp. 1—10.
13. Mitulet L.A. e. a. Wind Tunnel Testing for a New Experimental Model of Counter-rotating Wind Turbine // Proc. Eng. 2015. V. 100. Pp. 1141—1149.
14. Jung S.N., No T.S., Ryu K.W. Aerodynamic Performance Prediction of a 30 kW Counter-rotating wind Turbine System // Renewable Energy. 2005. V. 30. No. 5. Pp. 631—644.
15. Ozbay A., Tian W., Hu H. An Experimental Investigation on the Aeromechanics and Near Wake Characteristics of Dual-rotor Wind Turbines // Proc. 32nd ASME Wind Energy Symp. 2014. P. 1085.
16. Sunny K.A., Kumar P., Kumar N.M. Experimental Study on Novel Curved Blade Vertical Axis Wind Turbines // Results Eng. 2020. V. 7. P. 100149.
17. Yan J., Li G., Liu K. Development Trend of Wind Power Technology // UMBC Student Collection. 2020. V. 7. Pp. 124—132.
18. Fadil J., Soedibyo S., Ashari M. Novel of Vertical Axis Wind Turbine with Variable Swept Area Using Fuzzy Logic Controller // Intern. J. Intelligent Eng. and Syst. 2020. V. 13. No. 3. Pp. 256—267.
19. Suffer K.H., Hussain A.K., Hussain S. Modeling of the Aerodynamics of the Integrated Four Blades (VAWT) Having Movable Vanes // Proc. AIP Conf. 2020. V. 2213. No. 1. P. 020133.
20. Su J. e. a. Investigation of V-shaped Blade for the Performance Improvement of Vertical Axis Wind Turbines // Appl. Energy. 2020. V. 260. P. 114326.
21. Vilar A.A., Xydis G., Nanaki E.A. Small Wind: a Review of Challenges and Opportunities // Sustaining Resources for Tomorrow. 2020. Pp. 185—204.
22. Seralathan S. e. a. Experimental and Numerical Studies on a Cross Axis Wind Turbine // Proc. II Intern. Conf. Power and Embedded Drive Control. 2019. Pp. 185—190.
23. Wang W.C., Wang J.J., Chong W.T. The Effects of Unsteady Wind on the Performances of a Newly Developed Cross-axis Wind Turbine: a Wind Tunnel Study // Renewable Energy. 2019. V. 131. Pp. 644—659.
24. Ogawa S., Nomura T., Hata N. Study on Horizontal Type Turbine Driven by Longitudinal Vortex System // Proc. XIV Intern. Conf. Motion and Vibration. Daejeon Convention Center, 2018. Pp. 249—250.
25. Wang X.H. e. a. Experimental Investigation of a Diffuser-integrated Vertical Axis Wind Turbine // IOP Conf. Series: Earth and Environmental Sci. IOP Publ. 2020. V. 463. No. 1. P. 012153.
26. Kuang L. e. a. Power Performance and Aerodynamic Characteristics for a Straight-bladed Vertical Axis Wind Turbine with an External Diffuser // Proc. 30th Intern. Ocean and Polar Eng. Conf. International Society of Offshore and Polar Engineers, 2020.
27. Mandal A.K., Rana K.B., Tripathi B. Experimental Study on Performance Improvement of a Savonius Turbine by Equipping with a Cylindrical Cowling // Energy Sources. Pt. A: Recovery, Utilization, and Environmental Effects. 2020. Pp. 1—19.
28. Thangavelu S.K., Goh C.Y., Sia C.V. Design and Flow Simulation of Concentrator Augmented Wind Turbine // IOP Conf. Series: Materials Sci. and Eng. 2019. V. 501. No. 1. P. 012041.
29. Li Y. e. a. Aerodynamic Characteristics of Straight-bladed Vertical Axis Wind Turbine with a Curved-outline Wind Gathering Device // Energy Conversion and Management. 2020. V. 203. P. 112249.
30. Кошумбаев М.Б., Кошумбаев А.М. Численное моделирование вихревого процесса в ветровом агрегате // European Sci. 2019. № 2(44). C. 6—12.
31. Moleón Baca J.A., Expósito González A.J., Gutiérrez Montes C. Analysis of the Patent of a Protective Cover for Vertical-axis Wind Turbines (VAWTs): Simulations of Wind Flow // Sustainability. 2020. V. 12. No. 18. P. 7818.
32. Chong W.T. e. a. Performance Analysis of the Deflector Integrated Cross Axis Wind Turbine // Renewable Energy. 2019. V. 138. Pp. 675—690.
---
Для цитирования: Бубенчиков А.А., Беляев В.И., Голованов М.А. Обзор конструктивных решений оборудования ветроэнергетических установок // Вестник МЭИ. 2022. № 2. С. 34—44. DOI: 10.24160/1993-6982-2022-2-34-44.
#
1. International Energy Agency. Global Energy Rev., 2020 [Elektron. Resurs] www.iea.org/reports/global-energy-review-2020/electricity#abstract (Data Obrashcheniya 10.05.2021).
2. Global'nye Energeticheskie Tendentsii 2020 [Elektron. Resurs] www.enerdata.ru/publications/reports-presentations/world-energy-trends.html (Data Obrashcheniya 10.05.2021). (in Russian).
3. GOST R 51990—2002. Netraditsionnaya Energetika. Vetroenergetika. Ustanovki Vetroenergeticheskie. (in Russian).
4. Richmond-Navarro G. e. a. A Magnus Wind Turbine Power Model Based on Direct Solutions Using the Blade Element Momentum Theory and Symbolic Regression. IEEE Trans. Sustainable Energy. 2016;8;1:425—430.
5. Bychkov N.M., Dovgal A.V., Sorokin A.M. Parametric Optimization of the Magnus Wind Turbine. Proc. Intern. Conf. Methods of Aerophysical Research. 2008:1—5.
6. Pat. 12522538 USA. Magnus Type Wind Power Generator. Murakami N. 2010.
7. Demidova G.L. e. a. Magnus Wind Turbine: Finite Element Analysis and Control System. Proc. Intern. Symp. Power Electronics, Electrical Drives, Automation and Motion. 2020:59—64.
8. Chetan S. e. a. Analysis of a New Horizontal Axes Wind Turbine with 6/3 blades. Proc. IEEE Intern. Conf. Automation, Quality and Testing, Robotics. 2018:1—4.
9. Ragheb A., Ragheb M. Wind Turbine Gearbox Technologies. Proc. I Intern. Nuclear & Renewable Energy Conf. 2010:1—8.
10. Newman B.G. Multiple Actuator-disc Theory for Wind Turbines. J. Wind Eng. and Industrial Aerodynamics. 1986;24;3:215—225.
11. Shen W.Z. e. a. Analysis of Counter-rotating Wind Turbines. J. Physics: Conf. Series. IOP Publ. 2007;75;1:012003.
12. Habash R.W.Y. e. a. Performance of a Contrarotating Small Wind Energy Converter. Intern. Scholarly Research Notices. 2011:1—10.
13. Mitulet L.A. e. a. Wind Tunnel Testing for a New Experimental Model of Counter-rotating Wind Turbine. Proc. Eng. 2015;100:1141—1149.
14. Jung S.N., No T.S., Ryu K.W. Aerodynamic Performance Prediction of a 30 kW Counter-rotating wind Turbine System. Renewable Energy. 2005;30;5:631—644.
15. Ozbay A., Tian W., Hu H. An Experimental Investigation on the Aeromechanics and Near Wake Characteristics of Dual-rotor Wind Turbines. Proc. 32nd ASME Wind Energy Symp. 2014:1085.
16. Sunny K.A., Kumar P., Kumar N.M. Experimental Study on Novel Curved Blade Vertical Axis Wind Turbines. Results Eng. 2020;7:100149.
17. Yan J., Li G., Liu K. Development Trend of Wind Power Technology. UMBC Student Collection. 2020;7:124—132.
18. Fadil J., Soedibyo S., Ashari M. Novel of Vertical Axis Wind Turbine with Variable Swept Area Using Fuzzy Logic Controller. Intern. J. Intelligent Eng. and Syst. 2020;13;3:256—267.
19. Suffer K.H., Hussain A.K., Hussain S. Modeling of the Aerodynamics of the Integrated Four Blades (VAWT) Having Movable Vanes. Proc. AIP Conf. 2020;2213;1:020133.
20. Su J. e. a. Investigation of V-shaped Blade for the Performance Improvement of Vertical Axis Wind Turbines. Appl. Energy. 2020;260:114326.
21. Vilar A.A., Xydis G., Nanaki E.A. Small Wind: a Review of Challenges and Opportunities. Sustaining Resources for Tomorrow. 2020:185—204.
22. Seralathan S. e. a. Experimental and Numerical Studies on a Cross Axis Wind Turbine. Proc. II Intern. Conf. Power and Embedded Drive Control. 2019:185—190.
23. Wang W.C., Wang J.J., Chong W.T. The Effects of Unsteady Wind on the Performances of a Newly Developed Cross-axis Wind Turbine: a Wind Tunnel Study. Renewable Energy. 2019;131:644—659.
24. Ogawa S., Nomura T., Hata N. Study on Horizontal Type Turbine Driven by Longitudinal Vortex System. Proc. XIV Intern. Conf. Motion and Vibration. Daejeon Convention Center, 2018:249—250.
25. Wang X.H. e. a. Experimental Investigation of a Diffuser-integrated Vertical Axis Wind Turbine. IOP Conf. Series: Earth and Environmental Sci. IOP Publ. 2020;463;1:012153.
26. Kuang L. e. a. Power Performance and Aerodynamic Characteristics for a Straight-bladed Vertical Axis Wind Turbine with an External Diffuser. Proc. 30th Intern. Ocean and Polar Eng. Conf. International Society of Offshore and Polar Engineers, 2020.
27. Mandal A.K., Rana K.B., Tripathi B. Experimental Study on Performance Improvement of a Savonius Turbine by Equipping with a Cylindrical Cowling. Energy Sources. Pt. A: Recovery, Utilization, and Environmental Effects. 2020:1—19.
28. Thangavelu S.K., Goh C.Y., Sia C.V. Design and Flow Simulation of Concentrator Augmented Wind Turbine. IOP Conf. Series: Materials Sci. and Eng. 2019;501;1:012041.
29. Li Y. e. a. Aerodynamic Characteristics of Straight-bladed Vertical Axis Wind Turbine with a Curved-outline Wind Gathering Device. Energy Conversion and Management. 2020;203:112249.
30. Koshumbaev M.B., Koshumbaev A.M. Chislennoe Modelirovanie Vikhrevogo Protsessa v Vetrovom Agregate. European Sci. 2019; 2(44):6—12. (in Russian).
31. Moleón Baca J.A., Expósito González A.J., Gutiérrez Montes C. Analysis of the Patent of a Protective Cover for Vertical-axis Wind Turbines (VAWTs): Simulations of Wind Flow. Sustainability. 2020;12;18:7818.
32. Chong W.T. e. a. Performance Analysis of the Deflector Integrated Cross Axis Wind Turbine. Renewable Energy. 2019;138:675—690.
---
For citation: Bubenchikov A.A., Belyaev V.I., Golovanov M.A. A Review of Design Solutions for Wind Power Plant Equipment. Bulletin of MPEI. 2022;2:34—44. (in Russian). DOI: 10.24160/1993-6982-2022-2-34-44.