Analytical Assessments of Deformations and Natural Frequencies of Transmission Line Supports

  • Михаил [Mikhail] Николаевич [N.] Кирсанов [Kirsanov]
  • Олег [Oleg] Владимирович [V.] Воробьев [Vorob′yev]
Keywords: power transmission line support, number of panels, lower frequency estimate, Dunkerley method, Rayleigh method

Abstract

The purpose of the study is to derive analytical expressions for estimating the lower vibration frequency of the power line support truss flat models. The forces in the bars of statically determinate structures are determined by the method of cutting out nodes in a program written in the Maple symbolic mathematics language. To find deformations, the Maxwell-Mohr's formula is used under the assumption that all rods are elastic, and that the supports are modeled by rigid rods. It is supposed that the hinges are ideal, and the mass of the structure in the form of point loads is distributed over the truss nodes, and only horizontal load displacements are considered. In comparison with similar problem statements with analytical forms of solution, the present study takes into account the masses at all nodes of the structure. For two-sided estimation of the fundamental frequency, the methods of Dunkerley and Rayleigh are used. The coefficients of the formulas in the solutions obtained for trusses with different numbers of panels form sequences, the common terms of which from the solution of linear recurrent equations give the final formula for the frequency dependence on the number of panels. As a result of the study, formulas for deflection and estimation of the fundamental frequency of truss natural vibration depending on the number of panels and dimensions of the structure have been derived. The obtained formulas can be used in carrying out engineering analyses of power transmission line supports. The formulas for the deflection and frequencies of the studied trusses have a form simple and convenient for use (in particular, for assessing the accuracy of numerical solutions). The frequency obtained by the Rayleigh method is much closer to the fundamental natural frequency than its value estimated using the Dunkerley method.

Information about authors

Михаил [Mikhail] Николаевич [N.] Кирсанов [Kirsanov]

Dr.Sci. (Phys.-Math.), Professor of Robotics, Mechatronics, Dynamics and Machine Strength  Dept., NRU MPEI, e-mail: mpei2004@yandex.ru

Олег [Oleg] Владимирович [V.] Воробьев [Vorob′yev]

Ph.D.-student of Robotics, Mechatronics, Dynamics and Machine Strength Dept., NRU MPEI, e-mail: olvarg@mail.ru

References

1. Танасогло А.В. Уточнение коэффициента динамичности анкерно-угловой опоры ВЛ 110 кВ при действии пульсационной составляющей ветровой нагрузки // Металлические конструкции. 2012. Т. 18. №. 2. С. 135—145.
2. Пустовой Н.В., Левин В.Е., Красноруцкий Д.А., Кожевников А.Н. Методика расчета колебаний участка воздушных ЛЭП с помощью редуцированной КЭ-модели металлических опор и дифференциальной модели системы стержней // Сб. докл. ХI Всеросс. съезда по фундаментальным проблемам теоретической и прикладной механики. 2015. С. 3161—3163.
3. Запысова Е.А., Кожевников А.Н., Красноруцкий Д.А. Исследование влияния дефектов в элементах конструкции на спектр частот собственных колебаний на примере имитационной модели опоры ВЛ // Наука. Промышленность. Оборона. 2018. Т. 19. С. 40—44.
4. Рыбаков Л.С., Мишустин И.В. Собственные колебания плоских регулярных упругих ферм ортогональной структуры // Механика композиционных материалов и конструкций. 1999. Т. 5. № 2. С. 3—16.
5. Мишустин И.В., Рыбаков Л.С. Колебания плоских упругих ферм ортогональной структуры // Известия Академии наук. Серия «Механика твердого тела». 2003. № 2. С. 168—184.
6. Ufimtsev E., Voronina M. Research of Total Mechanical Energy of Steel Roof Truss during Structurally Nonlinear Oscillations // Proc. Eng. 2016. V. 150. Pp. 1891—1897.
7. Ufimtcev E. Dynamic Calculation of Nonlinear Oscillations of Flat Trusses. Pt. 2: Examples of Calculations // Proc. Eng. 2017. V. 206. Pp. 850—856.
8. Chen J. e. a. Vibration Reduction in Truss Core Sandwich Plate with Internal Nonlinear Energy Sink // Composite Structures. 2018. V. 193. Pp. 180—188.
9. Baeza L., Ouyang H. Vibration of a Truss Structure Excited by a Moving Oscillator // J. Sound and Vibration. 2009. V. 321. No. 3—5. Pp. 721—734.
10. Shu J. e. a. Assessment of a Cantilever Bridge Deck Slab Using Multi-level Assessment Strategy and Decision Support Framework // Eng. Structures. 2019. V. 200. P. 109666.
11. Tejani G.G., Savsani V.J., Patel V.K., Mirjalili S. Truss Optimization with Natural Frequency Bounds Using Improved Symbiotic Organisms Search // Knowledge-based Systems. 2018. V. 143. Pp. 162—178.
12. Игнатьев В.А. Расчет регулярных стержневых систем. Саратов: Саратовское высшее военно-химическое военное училище, 1973.
13. Zok F.W., Latture R.M., Begley M.R. Periodic Truss Structures // J. Mechanics and Physics of Solids. 2016. V. 96. Pp. 184—203.
14. Hutchinson R.G., Fleck N.A. Microarchitectured Cellular Solids the Hunt for Statically Determinate Periodic Trusses // ZAMM J. Appl. Math. and Mechanics. 2005. V. 85. No. 9. Pp. 607—617.
15. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss // J. Mechanics and Physics of Solids. 2006. V. 54. No. 4. Pp. 756—782.
16. Guest S.D., Hutchinson J.W. On the Determinacy of Repetitive Structures // J. Mechanics and Physics of Solids. 2003. V. 51. Pp. 383—391.
17. Kirsanov M. Trussed Frames and Arches: Schemes and Formulas. Cambridge: Cambridge Scholars Publ., 2020.
18. Кирсанов М.Н. Плоские фермы. Схемы и расчетные формулы. М.: ИНФРА-М, 2019.
19. Vorobev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss // Construction of Unique Buildings and Structures. 2020. V. 92. Pp. 1—13.
20. Воробьев О.В. О методах получения аналитического решения для проблемы собственных частот шарнирных конструкций // Строительная механика и конструкции. 2020. № 1(24). С. 25—38.
21. Кирсанов М.Н., Тиньков Д.В. Анализ собственных частот колебаний плоской фермы с произвольным числом панелей // Вестник МГСУ. 2019. Т. 14. № 3(126). С. 284—292.
22. Ахмедова Е.Р., Канатова М.И. Собственные частоты колебаний плоской балочной фермы регулярной структуры // Наука и образование в XXI веке: Сб. науч. тр. по материалам Междунар. науч.-практ. конф. Тамбов: Консалтинговая компания «Юком», 2014. С. 17—19.
23. Канатова М.И. Частотное уравнение и анализ колебаний плоской балочной фермы // Trends in Appl. Mechanics and Mechatronics. 2015. Т. 1. С. 31—34.
---
Для цитирования: Кирсанов М.Н., Воробьев О.В. Аналитические оценки деформаций и собственных частот опор линий электропередач // Вестник МЭИ. 2021. № 4. С. 122—128. DOI: 10.24160/1993-6982-2021-4-122-128.
---
Работа выполнена при поддержке: Междисциплинарной научно-образовательной школы Московского университета «Фундаментальные и прикладные исследования космоса»
#
1. Tanasoglo A.V. Utochnenie Koeffitsienta Dinamichnosti Ankerno-uglovoy Opory VL 110 kV pri Deystvii Pul'satsionnoy Sostavlyayushchey Vetrovoy Nagruzki. Metallicheskie konstruktsii. 2012;18;2:135—145. (in Russian).
2. Pustovoy N.V., Levin V.E., Krasnorutskiy D.A., Kozhevnikov A.N. Metodika Rascheta Kolebaniy Uchastka Vozdushnykh LEP s Pomoshch'yu Redutsirovannoy KE-modeli Metallicheskikh Opor i Differentsial'noy Modeli Sistemy Sterzhney. Sb. Dokl. XI Vseross. S′ezda po Fundamental'nym Problemam Teoreticheskoy i Prikladnoy Mekhaniki. 2015:3161—3163. (in Russian).
3. Zapysova E.A., Kozhevnikov A.N., Krasnorutskiy D.A. Issledovanie Vliyaniya Defektov v Elementakh Konstruktsii na Spektr Chastot Sobstvennykh Kolebaniy na Primere Imitatsionnoy Modeli Opory VL. Nauka. Promyshlennost'. Oborona. 2018;19:40—44. (in Russian).
4. Rybakov L.S., Mishustin I.V. Sobstvennye Kolebaniya Ploskikh Regulyarnykh Uprugikh Ferm Ortogonal'noy Struktury. Mekhanika Kompozitsionnykh Materialov i Konstruktsiy. 1999;5;2:3—16. (in Russian).
5. Mishustin I.V., Rybakov L.S. Kolebaniya Ploskikh Uprugikh Ferm Ortogonal'noy Struktury. Izvestiya Akademii Nauk. Seriya «Mekhanika Tverdogo Tela». 2003;2:168—184. (in Russian).
6. Ufimtsev E., Voronina M. Research of Total Mechanical Energy of Steel Roof Truss during Structurally Nonlinear Oscillations. Proc. Eng. 2016;150:1891—1897.
7. Ufimtcev E. Dynamic Calculation of Nonlinear Oscillations of Flat Trusses. Pt. 2: Examples of Calculations. Proc. Eng. 2017;206:850—856.
8. Chen J. e. a. Vibration Reduction in Truss Core Sandwich Plate with Internal Nonlinear Energy Sink. Composite Structures. 2018;193:180—188.
9. Baeza L., Ouyang H. Vibration of a Truss Structure Excited by a Moving Oscillator. J. Sound and Vibration. 2009;321;3—5:721—734.
10. Shu J. e. a. Assessment of a Cantilever Bridge Deck Slab Using Multi-level Assessment Strategy and Decision Support Framework. Eng. Structures. 2019;200:109666.
11. Tejani G.G., Savsani V.J., Patel V.K., Mirjalili S. Truss Optimization with Natural Frequency Bounds Using Improved Symbiotic Organisms Search. Knowledge-based Systems. 2018;143:162—178.
12. Ignat'ev V.A. Raschet Regulyarnykh Sterzhnevykh Sistem. Saratov: Saratovskoe Vysshee Voenno-khimicheskoe Voennoe Uchilishche, 1973. (in Russian).
13. Zok F.W., Latture R.M., Begley M.R. Periodic Truss Structures. J. Mechanics and Physics of Solids. 2016;96:184—203.
14. Hutchinson R.G., Fleck N.A. Microarchitectured Cellular Solids the Hunt for Statically Deter-minate Periodic Trusses. ZAMM J. Appl. Math. and Mechanics. 2005;85;9:607—617.
15. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss. J. Mechanics and Physics of Solids. 2006;54;4:756—782.
16. Guest S.D., Hutchinson J.W. On the Determinacy of Repetitive Structures. J. Mechanics and Physics of Solids. 2003;51:383—391.
17. Kirsanov M. Trussed Frames and Arches: Schemes and Formulas. Cambridge: Cambridge Scholars Publ., 2020.
18. Kirsanov M.N. Ploskie Fermy. Skhemy i Raschetnye Formuly. M.: INFRA-M, 2019. (in Russian).
19. Vorobev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020;92:1—13.
20. Vorob'ev O.V. O Metodakh Polucheniya Analiticheskogo Resheniya dlya Problemy Sobstvennykh Chastot Sharnirnykh Konstruktsiy. Stroitel'naya Mekhanika i Konstruktsii. 2020;1(24):25—38. (in Russian).
21. Kirsanov M.N., Tin'kov D.V. Analiz Sobstvennykh Chastot Kolebaniy Ploskoy Fermy s Proizvol'nym Chislom Paneley. Vestnik MGSU. 2019;14;3(126):284—292. (in Russian).
22. Akhmedova E.R., Kanatova M.I. Sobstvennye chastoty Kolebaniy Ploskoy Balochnoy Fermy Regulyarnoy Struktury. Nauka i obrazovanie v XXI Veke: Sb. Nauch. Tr. po Materialam Mezhdunar. Nauch.-prakt. Konf. Tambov: Konsaltingovaya Kompaniya «Yukom», 2014:17—19. (in Russian).
23. Kanatova M.I. Chastotnoe Uravnenie i Analiz Kolebaniy Ploskoy Balochnoy Fermy. Trends in Appl. Mechanics and Mechatronics. 2015;1:31—34. (in Russian).
---
For citation: Kirsanov M.N., Vorob′yev O.V. Analytical Assessments of Deformations and Natural Frequencies of Transmission Line Supports. Bulletin of MPEI. 2021;4:122—128. (in Russian). DOI: 10.24160/1993-6982-2021-4-122-128.
---
The work is executed at support: Interdisciplinary Scientific and Educational School of Moscow University «Fundamental and Applied Space Research»
Published
2020-11-15
Section
Mathematical Modeling, Numerical Methods and Program Complexe (05.13.18)