Development of an Integrated Power Plant with Exhaust Gas Heat Recovery

  • Баидаа [Baidaa] Бу Дакка [Bu Dakka]
  • Ильдар [I′ldar] Айдарович [A.] Султангузин [Sultanguzin]
  • Юрий [Yuriy] Викторович [V.] Яворовский [Yavorovsky]
  • Сергей [Sergey] Юрьевич [Yu.] Курзанов [Kurzanov]
Keywords: gas turbine cycle, steam turbine cycle, organic Rankine cycle, absorption chilling machine, greenhouse gases, recuperator, hydrogen, exhaust gases

Abstract

New combined thermal power units intended for electricity generation are compared. The considered power units include basically a gas turbine and a steam turbine cycle united by a combined cycle plant, organic Rankine cycles, and an absorption chilling machine. The fuel used in the system is 100% natural gas in winter or a mix of 80% natural gas and 20% hydrogen in summer. The increase of energy generation efficiency depends on the measures taken to minimize harmful emissions into the environment and measures taken to increase the extent to which the exhaust gas heat is recovered. In the systems presented, the recovered waste heat is used for electricity generation, heating, and cooling. The combined cycle plant systems involving the use of an absorption chilling machine and with different kinds of exhaust gas heat recovery are described. The system mathematical model was developed, using which the process cycle circuits were analyzed and compared with respect to the energy criteria. For the combined cycle plant involving regeneration and organic cycle according to the process cycle circuit C, it has been found that this system produces a high electric power output equal to around 543.6 MW in summer and 515.8 MW in winter, with efficiency values equal to 66.94% and 66.47%, respectively. The increased energy efficiency is achieved owing to the use of three recuperative heat exchangers for heating the air in the gas turbine cycle combustion chamber, steam turbine condensate, and the organic Rankine cycle coolant. This, in turn, results in a growth in the gas turbine cycle, steam turbine cycle, and organic Rankine cycle efficiencies, thereby resulting in higher efficiency of the system as a whole. Since system C does not use an absorption chilling machine, it is the most economically efficient one.

Information about authors

Баидаа [Baidaa] Бу Дакка [Bu Dakka]

Ph.D.-student of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: eng.baydaabod@gmail.com

Ильдар [I′ldar] Айдарович [A.] Султангузин [Sultanguzin]

Dr.Sci. (Techn.), Professor of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: SultanguzinIA@mpei.ru

Юрий [Yuriy] Викторович [V.] Яворовский [Yavorovsky]

Ph.D. (Techn.), Head of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: YavorovskyYV@mpei.ru

Сергей [Sergey] Юрьевич [Yu.] Курзанов [Kurzanov]

Ph.D. (Techn.), Assistant Professor of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: gv_lipetsk@rambler.ru

References

1. Bo Dakkah B. e. a. Choosing the Suitable Working Fluid to Recover Heat from Low-Temperature Sources // Proc. III Intern. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2021. Pp. 1—5.
2. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинный и парогазовые установки тепловых электростанций М.: Изд-во МЭИ, 2002.
3. Soltani S., Mahmoudi S.M.S., Yari M., Rosen M.A. Thermodynamic Analyses of an Externally Fired Gas Turbine Combined Cycle Integrated with a Biomass Gasification Plant // Energy Convers. Manag. 2013. No. 70. Pp. 107—115.
4. Khanmohammadi S., Atashkari K., Kouhikamali R. Exergoeconomic Multi-objective Optimization of an Externally Fired Gas Turbine Integrated with a Biomass Gasifier // Appl. Therm. Eng. 2015. V. 91. Pp. 848—859.
5. Khanmohammadi S., Saadat-Targhi M., Al-Rashed A.A., Afrand M. Thermodynamic and Economic Analyses and Multi-objective Optimization of Harvesting Waste Heat from a Biomass Gasifier Integrated System by Thermoelectric Generator // Energy Convers. Manag. 2019. V. 195. Pp. 1022—1034.
6. Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. М.: Энергоиздат, 1981.
7. Athari H., Soltani S., Rosen M.A., Gavifekr M.K., Morosuk T. Exergoeconomic Study of Gas Turbine Steam Injection and Combined Power Cycles Using Fog Inlet Cooling and Biomass Fuel // Renew. Energy. 2016. V. 96. Pp. 715—726.
8. Camporeale S.M., Pantaleo A.M., Ciliberti P.D., Fortunato B. Cycle Configuration Analysis and Techno-economic Sensitivity of Biomass Externally Fired Gas Turbine with Bottoming ORC // Energy Convers. Manag. 2015. V. 105. Pp. 1239—1250.
9. Moharamian A., Soltani S., Rosen M.A., Mahmoudi S.M.S., Morosuk T. A Comparative Thermoeconomic Evaluation of Three Biomass and Biomass-natural Gas Fired Combined Cycles Using Organic Rankine Cycles // J. Clean. Prod. 2017. V. 161. Pp. 524—544.
10. Bo Dakkah B., Sultanguzin I.A., Yavorovsky Y.V., Badran B.E., Tina H.A. Experimental Study of the Recovery of Low Heat Using the Organic Rankine Cycle // Proc. III Int. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2021.
11. Mahmoudi S.M.S., Zare V., Ranjbar F., Farshi L.G. Energy and Exergy Analysis of Simple and Regenerative Gas Turbines Inlet Air Cooling Using Absorption Refrigeration // J. Appl. Sci. 2009. V. 9(13). Pp. 2399—2407.
12. Bartenev A. I. e. a. Improving the Energy Efficiency of Gas Pumping Units Based on Absorption Heat Transformers // Proc. IV Int. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2022.
13. Ameri M., Hejazi S.H. The Study of Capacity Enhancement of the Chabahar Gas Turbine Installation Using an Absorption Chiller // Appl. Therm. Eng. 2004. V. 24(1). Pp. 59—68.
14. Kwon H.M., Kim T.S., Sohn J.L., Kang D.W. Performance Improvement of Gas Turbine Combined Cycle Power Plant by Dual Cooling of the Inlet Air and Turbine Coolant Using an Absorption Chiller // Energy. 2018. V. 163. Pp. 1050—1061.
15. Singh O.K. Performance Enhancement of Combined Cycle Power Plant Using Inlet Air Cooling by Exhaust Heat Operated Ammonia-water Absorption Refrigeration System // Appl. Energy. 2016. V. 180. Pp. 867–879.
16. Cao Y., Mihardjo L.W.W., Dahari M., Tlili I. Waste Heat from a Biomass Fueled Gas Turbine for Power Generation via an ORC or Compressor Inlet Cooling via an Absorption Refrigeration Cycle: a Thermoeconomic Comparison // Appl. Therm. Eng. 2021. V. 182. P. 116117.
17. Osta-Omar S.M., Micallef C. Mathematical Model of a Lithium–bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber // Computation. 2016. V. 4(4). P. 44.
18. Yuksel Y.E., Ozturk M., Dincer I. Performance Investigation of a Combined Biomass Gasifier-SOFC Plant for Compressed Hydrogen Production // Intern. J. Hydrogen Energy. 2020. V. 45(60). Pp. 34679—34694.
19. Tukenmez N., Yilmaz F., Ozturk M. A Thermal Performance Evaluation of a New Integrated Gas Turbine-based Multigeneration Plant with Hydrogen and Ammonia Production // Int. J. Hydrogen Energy. 2021. V. 46(57). Pp. 29012—29026.
20. Пат. № 2779349 РФ. Рекуперационная энергетическая установка / Бу Дакка Б., Султангузин И.А., Яворовский Ю.В., Бартенев А.И. // Бюл. изобрет. 2022. № 25.
21. Rostamnejad Takleh H., Zare V. Employing Thermoelectric Generator and Booster Compressor for Performance Improvement of a Geothermal Driven Combined Power and Ejector-Refrigeration Cycle // Energy Convers. Manag. 2019. V. 186. Pp. 120—130.
22. Dincer I., Rosen M.A. Exergy: Energy, Environment and Sustainable Development. N.-Y.: Elsevier Sci., 2013.
23. Bejan A., Tsatsaronis G., Moran M.J. Thermal Design and Optimization. N.-Y.: John Wiley & Sons Inc., 1995
---
Для цитирования: Бу Дакка Баидаа, Султангузин И.А., Яворовский Ю.В., Курзанов С.Ю. Разработка комплексной энергетической установки с рекуперацией теплоты уходящих газов // Вестник МЭИ. 2025. № 1. С. 100—109. DOI: 10.24160/1993-6982-2025-1-100-109
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bo Dakkah B. e. a. Choosing the Suitable Working Fluid to Recover Heat from Low-Temperature Sources. Proc. III Intern. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2021:1—5.
2. Tsanev S.V., Burov V.D., Remezov A.N. Gazoturbinnyy i Parogazovye Ustanovki Teplovykh Elektrostantsiy M.: Izd-vo MEI, 2002. (in Russian).
3. Soltani S., Mahmoudi S.M.S., Yari M., Rosen M.A. Thermodynamic Analyses of an Externally Fired Gas Turbine Combined Cycle Integrated with a Biomass Gasification Plant. Energy Convers. Manag. 2013;70:107—115.
4. Khanmohammadi S., Atashkari K., Kouhikamali R. Exergoeconomic Multi-objective Optimization of an Externally Fired Gas Turbine Integrated with a Biomass Gasifier. Appl. Therm. Eng. 2015;91:848—859.
5. Khanmohammadi S., Saadat-Targhi M., Al-Rashed A.A., Afrand M. Thermodynamic and Economic Analyses and Multi-objective Optimization of Harvesting Waste Heat from a Biomass Gasifier Integrated System by Thermoelectric Generator. Energy Convers. Manag. 2019;195:1022—1034.
6. Sokolov E.Ya., Brodyanskiy V.M. Energeticheskie Osnovy Transformatsii Tepla i Protsessov Okhlazhdeniya. M.: Energoizdat, 1981. (in Russian).
7. Athari H., Soltani S., Rosen M.A., Gavifekr M.K., Morosuk T. Exergoeconomic Study of Gas Turbine Steam Injection and Combined Power Cycles Using Fog Inlet Cooling and Biomass Fuel. Renew. Energy. 2016;96:715—726.
8. Camporeale S.M., Pantaleo A.M., Ciliberti P.D., Fortunato B. Cycle Configuration Analysis and Techno-economic Sensitivity of Biomass Externally Fired Gas Turbine with Bottoming ORC. Energy Convers. Manag. 2015;105:1239—1250.
9. Moharamian A., Soltani S., Rosen M.A., Mahmoudi S.M.S., Morosuk T. A Comparative Thermoeconomic Evaluation of Three Biomass and Biomass-natural Gas Fired Combined Cycles Using Organic Rankine Cycles. J. Clean. Prod. 2017;161:524—544.
10. Bo Dakkah B., Sultanguzin I.A., Yavorovsky Y.V., Badran B.E., Tina H.A. Experimental Study of the Recovery of Low Heat Using the Organic Rankine Cycle. Proc. III Int. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2021.
11. Mahmoudi S.M.S., Zare V., Ranjbar F., Farshi L.G. Energy and Exergy Analysis of Simple and Regenerative Gas Turbines Inlet Air Cooling Using Absorption Refrigeration. J. Appl. Sci. 2009;9(13):2399—2407.
12. Bartenev A. I. e. a. Improving the Energy Efficiency of Gas Pumping Units Based on Absorption Heat Transformers. Proc. IV Int. Youth Conf. Radio Electron. Electr. Power Eng. Moscow, 2022.
13. Ameri M., Hejazi S.H. The Study of Capacity Enhancement of the Chabahar Gas Turbine Installation Using an Absorption Chiller. Appl. Therm. Eng. 2004;24(1):59—68.
14. Kwon H.M., Kim T.S., Sohn J.L., Kang D.W. Performance Improvement of Gas Turbine Combined Cycle Power Plant by Dual Cooling of the Inlet Air and Turbine Coolant Using an Absorption Chiller. Energy. 2018;163:1050—1061.
15. Singh O.K. Performance Enhancement of Combined Cycle Power Plant Using Inlet Air Cooling by Exhaust Heat Operated Ammonia-water Absorption Refrigeration System. Appl. Energy. 2016;180:867–879.
16. Cao Y., Mihardjo L.W.W., Dahari M., Tlili I. Waste Heat from a Biomass Fueled Gas Turbine for Power Generation via an ORC or Compressor Inlet Cooling via an Absorption Refrigeration Cycle: a Thermoeconomic Comparison. Appl. Therm. Eng. 2021;182:116117.
17. Osta-Omar S.M., Micallef C. Mathematical Model of a Lithium–bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber. Computation. 2016;4(4):44.
18. Yuksel Y.E., Ozturk M., Dincer I. Performance Investigation of a Combined Biomass Gasifier-SOFC Plant for Compressed Hydrogen Production. Intern. J. Hydrogen Energy. 2020;45(60):34679—34694.
19. Tukenmez N., Yilmaz F., Ozturk M. A Thermal Performance Evaluation of a New Integrated Gas Turbine-based Multigeneration Plant with Hydrogen and Ammonia Production. Int. J. Hydrogen Energy. 2021;46(57):29012—29026.
20. Pat. № 2779349 RF. Rekuperatsionnaya Energeticheskaya Ustanovka. Bu Dakka B., Sultanguzin I.A., Yavorovskiy Yu.V., Bartenev A.I. Byul. Izobret. 2022;25. (in Russian).
21. Rostamnejad Takleh H., Zare V. Employing Thermoelectric Generator and Booster Compressor for Performance Improvement of a Geothermal Driven Combined Power and Ejector-Refrigeration Cycle. Energy Convers. Manag. 2019;186:120—130.
22. Dincer I., Rosen M.A. Exergy: Energy, Environment and Sustainable Development. N.-Y.: Elsevier Sci., 2013.
23. Bejan A., Tsatsaronis G., Moran M.J. Thermal Design and Optimization. N.-Y.: John Wiley & Sons Inc., 1995
---
For citation: Baidaa Bu Dakka, Sultanguzin I.A., Yavorovsky Yu.V., Kurzanov S.Yu. Development of an Integrated Power Plant with Exhaust Gas Heat Recovery. Bulletin of MPEI. 2025;1:100—109. (in Russian). DOI: 10.24160/1993-6982-2025-1-100-109
---
Conflict of interests: the authors declare no conflict of interest
Published
2024-10-24
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)