Application of a Statistical Analysis for Estimating the Steel Specimen Deformation Degree Based on the Acoustic-emission Pulses Segmentation Results

  • Николай [Nikolay] Андреевич [A.] Махутов [Makhutov]
  • Артём [Artem] Юрьевич [Yu.] Марченков [Marchenkov]
  • Егор [Egor] Валериевич [V.] Терентьев [Terent’ev]
  • Дмитрий [Dmitriy] Витальевич [V.] Чернов [Chernov]
  • Игорь [Igor] Евгеньевич [E.] Васильев [Vasiliev]
  • Анастасия [Anastasiya] Алексеевна [A.] Панькина [Pan’kina]
Keywords: acoustic emission, tensile test, deformation degree, plastic deformation, 30KhGSA steel, statistical analysis, flow parameters, regression model

Abstract

The problem of determining of the most informative acoustic-emission parameters correlating with the deformation degree of specimens made of 30KhGSA structural steel is addressed. Static destructive tensile tests of steel specimens with synchronous recording of acoustic emission (AE) signals during the loading were carried out. It is shown that the absolute values of primary AE parameters such as amplitude and activity do not have a clear unique relationship with the specimen deformation degree. This confirms the impossibility of using standard criteria (e.g., the amplitude criterion) in performing acoustic emission monitoring of the damage accumulation in structural materials. A detailed analysis of the obtained acoustic emission signals has shown that the combined application of such flow parameters as the average frequency of overshoots and specific energy of the recorded AE pulses makes it possible to estimate the deformation degree of steel specimens starting from the yield point to their failure. A multiple linear regression model was proposed for numerically estimating the metal deformation degree based on the flow parameters of the pulses recorded. It has been shown that the metal deformation degree in the regions of low and developed elastic-plastic deformations can be determined from the acoustic emission data using the proposed AE data analysis model with a relative error of not higher than 7%.

Information about authors

Николай [Nikolay] Андреевич [A.] Махутов [Makhutov]

Dr.Sci. (Techn.), Corresponding Member of the Russian Academy of Sciences, Chief Researcher at the Laboratory of Fracture Mechanics and Survivability, A.A. Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences, e-mail: kei51@mail.ru

Артём [Artem] Юрьевич [Yu.] Марченков [Marchenkov]

Ph.D. (Techn.), Assistant Professor of Metal Technology Dept., NRU MPEI, e-mail: art-marchenkov@yandex.ru

Егор [Egor] Валериевич [V.] Терентьев [Terent’ev]

Ph.D. (Techn.), Assistant Professor of Metal Technology Dept., NRU MPEI, e-mail: TerentyevYV@mpei.ru

Дмитрий [Dmitriy] Витальевич [V.] Чернов [Chernov]

Ph.D. (Techn.), Senior Researcher at the Laboratory for Modeling Damage and Destruction of Machines, A.A. Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences, e-mail: chernovdv@inbox.ru

Игорь [Igor] Евгеньевич [E.] Васильев [Vasiliev]

Ph.D. (Techn.), Senior Researcher at the Laboratory for Modeling Damage and Destruction of Machines, A.A. Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences, e-mail: vie01@rambler.ru

Анастасия [Anastasiya] Алексеевна [A.] Панькина [Pan’kina]

Student of Metal Technology Dept., NRU MPEI, e-mail: pankina_anastasiia@mail.ru

References

1. Махутов Н.А., Матвиенко Ю.Г., Романов А.Н. Проблемы прочности, техногенной безопасности и конструкционного материаловедения. М.: Ленард, 2018.
2. Иванов В.И., Барат В.А. Акустико-эмиссионная диагностика. М.: Спектр, 2017.
3. Виноградов А.Ю., Мерсон Д.Л. Природа акустической эмиссии при деформационных процессах в металлических материалах // Физика низких температур. 2018. Т. 44. № 9. С. 1186—1195.
4. Носов В.В., Зеленский Н.А. Оценка прочности элементов сварного корпуса подводного аппарата на основе микромеханической модели временных зависимостей параметров акустической эмиссии // Дефектоскопия. 2017. № 2. С. 3—9.
5. Буйло С.И. Физико-механические, химические и статистические аспекты акустической эмиссии // Известия АлтГУ. 2019. № 1. С. 11—21.
6. Vetrone J., Obregon J. E., Indacochea E. J., Ozevin D. The Characterization of Deformation Stage of Metals Using Acoustic Emission Combined with Nonlinear Ultrasonics // Measurement. 2021. V. 178. P. 109407.
7. Zou Sh., Yan F., Yang G., Sun W. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis // Sensors. 2017. V. 17(4). P. 789.
8. Ботвина Л.Р. и др.Стадийность процесса разрушения и остаточная прочность трубной стали после длительной эксплуатации // Физическая мезомеханика. 2021. Т. 24. № 1. С. 50—61.
9. Зибров Г.В., Попов А.В., Старов В.Н., Смоленцев Е.В. Метод акустической эмиссии на основе инвариантов в оценке прочности специальных конструкций и техники // Вестник Воронежского института ГПС МЧС России. 2014. № 4. С. 22—28.
10. Chernyaeva E.V. e. a. Evaluation of the Condition of a Metal Using the Acoustic-emission Method: Prospects and Problems // Russ. J. Nondestruct. Test. 2013. V. 49. Pp. 131—139.
11. Матвиенко Ю.Г., Васильев И.Е., Чернов Д.В., Елизаров С.В. Проблемы локации источников акустической эмиссии // Дефектоскопия. 2021. № 9. С. 35—44.
12. Botvina L.R. e. a. Residual Strength, Microhardness, and Acoustic Properties of Low-carbon Steel after Cyclic Loading // J. Machinery Manufacture and Reliability. 2018. V. 47(6). Рp. 516—524.
13. Матвиенко Ю.Г., Васильев И.Е., Чернов Д.В. Снижение погрешности при определении скорости распространения волнового пакета в композиционных материалах // Приборы и техника эксперимента. 2020. № 1. С. 115—120.
14. Middleton C.A., McCrory J.P., Greene R.J., Holford K., Patterson E.A. Detecting and Monitoring Cracks in Aerospace Materials Using Post-Processing of TSA and AE Data // Metals. 2019. V. 9(7). P. 748.
15. Makhutov N.A., Vasiliev I.E., Chernov D.V., Ivanov V.I., Terent’ev E.V. Adaptation of Methodology for Monitoring Damage Kinetics and Assessing Load-Bearing Capacity in Relation to Steel Products // Russ. J. Nondestruct. Test. 2022. V. 58(9). Pp. 800—813.
16. Martin-del-Campo S., Sandin F., Schnabel S., Marklund P., Delsing J. Exploratory Analysis of Acoustic Emissions in Steel using Dictionary Learning // Proc. IEEE Intern. Ultrasonic Symp. 2016. Pp. 1—4.
17. Louda P., Sharko A., Stepanchikov D. An Acoustic Emission Method for Assessing the Degree of Degradation of Mechanical Properties and Residual Life of Metal Structures under Complex Dynamic Deformation Stresses // Materials. 2021. V. 14(9). P. 2090.
18. Панин С.В., Башков О.В., Семашко Н.А., Панин В.Е., Золотарева С.В. Комбинированное исследование особенностей деформации плоских образцов и образцов с надрезом на микро- и мезоуровнях методами акустической эмиссии и построения карт деформации поверхности // Физическая мезомеханика. 2004. Т. 7. № S1—2. C. 303—306.
19. Волегов П.С., Грибов Д.С., Трусов П.В. Поврежденность и разрушение: обзор экспериментальных работ // Физическая мезомеханика. 2015. № 18(3). С. 11—24.
20. Ono K. Application of Acoustic Emission for Structure Diagnosis // Diagnostics and structural health monitoring. 2011. V. 58(2). Pp. 3—17.
---
Для цитирования: Махутов Н.А., Марченков А.Ю., Терентьев Е.В., Чернов Д.В., Васильев И.Е., Панькина А.А. Применение статистического анализа для оценки степени деформации стальных образцов по результатам сегментации импульсов акустической эмиссии // Вестник МЭИ. 2024. № 2. С. 157—165. DOI: 10.24160/1993-6982-2024-2-157-165

Работа выполнена при поддержке: Российского научного фонда (проект № 20-19-00769-П), https://rscf.ru/prjcard_int?20-19-00769
#
1. Makhutov N.A., Matvienko Yu.G., Romanov A.N. Problemy Prochnosti, Tekhnogennoy Bezopasnosti i Konstruktsionnogo Materialovedeniya. M.: Lenard, 2018. (in Russian).
2. Ivanov V.I., Barat V.A. Akustiko-emissionnaya Diagnostika. M.: Spektr, 2017. (in Russian).
3. Vinogradov A.Yu., Merson D.L. Priroda Akusticheskoy Emissii pri Deformatsionnykh Protsessakh v Metallicheskikh Materialakh. Fizika Nizkikh Temperatur. 2018. 44;9:1186—1195. (in Russian).
4. Nosov V.V., Zelenskiy N.A. Otsenka Prochnosti Elementov Svarnogo Korpusa Podvodnogo Apparata na Osnove Mikromekhanicheskoy Modeli Vremennykh Zavisimostey Parametrov Akusticheskoy Emissii. Defektoskopiya. 2017;2:3—9. (in Russian).
5. Buylo S.I. Fiziko-mekhanicheskie, Khimicheskie i Statisticheskie Aspekty Akusticheskoy Emissii. Izvestiya AltGU. 2019;1:11—21. (in Russian).
6. Vetrone J., Obregon J. E., Indacochea E. J., Ozevin D. The Characterization of Deformation Stage of Metals Using Acoustic Emission Combined with Nonlinear Ultrasonics. Measurement. 2021;178:109407.
7. Zou Sh., Yan F., Yang G., Sun W. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis. Sensors. 2017;17(4):789.
8. Botvina L.R. i dr.Stadiynost' Protsessa Razrusheniya i Ostatochnaya Prochnost' Trubnoy Stali Posle Dlitel'noy Ekspluatatsii. Fizicheskaya Mezomekhanika. 2021;24;1:50—61. (in Russian).
9. Zibrov G.V., Popov A.V., Starov V.N., Smolentsev E.V. Metod Akusticheskoy Emissii na Osnove Invariantov v Otsenke Prochnosti Spetsial'nykh Konstruktsiy i Tekhniki. Vestnik Voronezhskogo Instituta GPS MCHS Rossii. 2014;4:22—28. (in Russian).
10. Chernyaeva E.V. e. a. Evaluation of the Condition of a Metal Using the Acoustic-emission Method: Prospects and Problems. Russ. J. Nondestruct. Test. 2013;49:131—139.
11. Matvienko Yu.G., Vasil'ev I.E., Chernov D.V., Elizarov S.V. Problemy Lokatsii Istochnikov Akusticheskoy Emissii. Defektoskopiya. 2021;9:35—44. (in Russian).
12. Botvina L.R. e. a. Residual Strength, Microhardness, and Acoustic Properties of Low-carbon Steel after Cyclic Loading. J. Machinery Manufacture and Reliability. 2018;47(6):516—524.
13. Matvienko Yu.G., Vasil'ev I.E., Chernov D.V. Snizhenie Pogreshnosti pri Opredelenii Skorosti Rasprostraneniya Volnovogo Paketa v Kompozitsionnykh Materialakh. Pribory I Tekhnika Eksperimenta. 2020;1:115—120. (in Russian).
14. Middleton C.A., McCrory J.P., Greene R.J., Holford K., Patterson E.A. Detecting and Monitoring Cracks in Aerospace Materials Using Post-Processing of TSA and AE Data. Metals. 2019;9(7):748.
15. Makhutov N.A., Vasiliev I.E., Chernov D.V., Ivanov V.I., Terent’ev E.V. Adaptation of Methodology for Monitoring Damage Kinetics and Assessing Load-Bearing Capacity in Relation to Steel Products. Russ. J. Nondestruct. Test. 2022;58(9):800—813.
16. Martin-del-Campo S., Sandin F., Schnabel S., Marklund P., Delsing J. Exploratory Analysis of Acoustic Emissions in Steel using Dictionary Learning. Proc. IEEE Intern. Ultrasonic Symp. 2016:1—4.
17. Louda P., Sharko A., Stepanchikov D. An Acoustic Emission Method for Assessing the Degree of Degradation of Mechanical Properties and Residual Life of Metal Structures under Complex Dynamic Deformation Stresses. Materials. 2021;14(9):2090.
18. Panin S.V., Bashkov O.V., Semashko N.A., Panin V.E., Zolotareva S.V. Kombinirovannoe Issledovanie Osobennostey Deformatsii Ploskikh Obraztsov i Obraztsov s Nadrezom na Mikro- i Mezourovnyakh Metodami Akusticheskoy Emissii i Postroeniya Kart Deformatsii Poverkhnosti. Fizicheskaya Mezomekhanika. 2004. 7;S1—2:303—306. (in Russian).
19. Volegov P.S., Gribov D.S., Trusov P.V. Povrezhdennost' i Razrushenie: Obzor Eksperimental'nykh Rabot. Fizicheskaya Mezomekhanika. 2015;18(3):11—24. (in Russian).
20. Ono K. Application of Acoustic Emission for Structure Diagnosis. Diagnostics and structural health monitoring. 2011;58(2):3—17
---
For citation: Makhutov N.A., Marchenkov A.Yu., Terent’ev E.V., Chernov D.V., Vasil’ev I.E., Pan’kina A.A. Application of a Statistical Analysis for Estimating the Steel Specimen Deformation Degree Based on the Acoustic-emission Pulses Segmentation Results. Bulletin of MPEI. 2024;2:157—165. (in Russian). DOI: 10.24160/1993-6982-2024-2-157-165

The work is executed at support: Russian Science Foundation (Project No. 20-19-00769-П), https://rscf.ru/prjcard_int?20-19-00769
Published
2023-12-21
Section
Methods and Devices for Monitoring and Diagnostics of Materials, Products, Substances and the Natural Environment (Technical Sciences) (2.5.9)