The Prospects of Theoretical Lines for Studying Streamers in Air (Review)

  • Андрей [Andrey] Анатольевич [A.] Белогловский [Beloglovsky]
  • Илья [Il`ya] Олегович [O.] Савельев [Savelyev]
  • Наталия [Nataliya] Александровна [A.] Лебедева [Lebedeva]
Keywords: streamer electric discharge, basic concepts and application, streamer branching, review of publications

Abstract

The article opens a series of papers to be published by the team of researchers at the NRU MPEI Department of High Voltage Engineering and Electrophysics on their theoretical investigations into the branching and parallel development of cathode-directed (positive) streamers in air. Papers published for the period from 1979 to 2022 on the fundamentals of the streamer discharge theory and its application in high-voltage electrical technologies, agriculture, and medicine are briefly reviewed. The potential role of streamer branching in these applications is explained. The currently known concepts of streamer branching in air are outlined. Their substantiation in physical and computational experiments is estimated. It is concluded that the concept explaining the branching by the development of large electron avalanches in the electric field of streamer heads has been confirmed convincingly. A series of computational experiments is proposed to study the branching of individual streamers, the interaction of simultaneously developing branches, and to determine their influence on the discharge parameters. The results obtained will be published in the subsequent articles of this series.

Information about authors

Андрей [Andrey] Анатольевич [A.] Белогловский [Beloglovsky]

Ph.D. (Techn.), Assistant Professor of High Voltage Engineering and Electrical Physics Dept., NRU MPEI, e-mail: BeloglovskyAA@mpei.ru

Илья [Il`ya] Олегович [O.] Савельев [Savelyev]

Master Student of High Voltage Engineering and Electrical Physics Dept., NRU MPEI, Assistant of Theoretical Fundamentals of Electrical Engineering Dept., NRU MPEI

Наталия [Nataliya] Александровна [A.] Лебедева [Lebedeva]

Ph.D. (Economic), Assistant Professor of High Voltage Engineering and Electrical Physics Dept., NRU MPEI

References

1. Бортник И.М. и др. Электрофизические основы техники высоких напряжений. М: Изд-во МЭИ, 2018.
2. Райзер Ю.П. Физика газового разряда. Долгопрудный: Издат. дом «Интеллект», 2009.
3. Lehtinen N.G. Physics and Mathematics of Electric Streamers // Radiophysics and Quantum Electronics. 2021. V. 64. No. 1. Pp. 11—25.
4. Gilber A., Bastien F. Fine Structure of Streamers // J. Phys. D: Appl. Phys. 1989. V. 22. P. 1078—1082.
5. Li Yu. e. a. Characterizing Streamer Branching in N2–O2 Mixtures by 2D Peak-finding // Plasma Sources Sci. Technol. 2020. V. 29. P. 03LT02.
6. Gallimberti I. Impulse Corona Simulation for Flue Gas Treatment // Pure & Appl. Chem. 1988. V. 60. No. 5. Pp. 663—674.
7. Akter M. e. a. Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer // Int. J. Mol. Sci. 2020. V. 21. P. 8321.
8. Măgureanu M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma // Plasma Chem. Plasma Proc. 2018. V. 38. No. 5. Pp. 989—1001.
9. Filimonova E.A. e. a. Formation of Combustion Wave in Lean Propane-air Mixture with a Non-uniform Chemical Reactivity Initiated by Nanosecond Streamer Discharges in the HCCI Engine // Combustion and Flame. 2020. V. 215. Pp. 401—416.
10. Чернухин А.Ю., Князев В.В. Стримерная корона со стержневых молниеприёмников // Восточно-Европейский научный журнал. 2016. Т. 6. № 2. С. 39—46.
11. Белогловский А.А., Рушальщикова А.В. Изучение ветвления катодонаправленного стримера в воздухе посредством трёхмерной математической модели // Электричество. 2016. № 7. С. 16—23.
12. Белогловский А.А., Верещагин И.П. Трёхмерное математическое моделирование стримерного разряда в воздухе с учётом ветвления: экономичный расчёт электрического поля // Электричество. 2011. № 11. С. 17—24.
13. Юргеленас Ю.В. Алгоритм расчёта динамики заряженных частиц в диффузионно-дрейфовой модели стримера // Физико-технические проблемы передачи электрической энергии: Сб. науч. статей. М.: Изд-во МЭИ, 1998. С. 121—160.
14. Тарасенко В.Ф. Измерение и моделирование скорости стримера при пробое воздуха в резко неоднородном электрическом поле // Физика плазмы. 2020. Т. 46. № 3. С. 273—280.
15. Semenov I.L., Weltmann K.-D. A Spectral Element Method for Modelling Streamer Discharges in Low-temperature Atmospheric-pressure Plasmas // J. Computational Phys. 2022. V. 465. P. 111378.
16. Nijdam S., Teunissen J., Ebert U. The Physics of Streamer Discharge Phenomena // Plasma Sources Sci. Technol. 2020. V. 29. P. 103001.
17. Белогловский А.А., Белоусов С.В., Галимова А.В. Исследование в вычислительных экспериментах особенностей формирования и развития стримеров в воздухе // Вестник МЭИ. 2022. № 6. С. 61—67.
18. Верещагин И.П. Влияние фотоионизации на распространение катодонаправленных стримеров в воздухе // Вестник МЭИ. 2012. № 2. С. 67—72.
19. Papageorgiou L., Georghiou G.E., Metaxas A.C. Three-dimensional Numerical Modeling of Gas Discharges at Atmospheric Pressure Incorporating Photoionization Phenomena // J. Phys. D: Appl. Phys. 2011. V. 44. P. 045203.
20. Bagheri B., Teunissen J. The Effect of the Stochasticity of Photoionization on 3D Streamer Simulations // Plasma Sources Sci. Technol. 2019. V. 28. P. 045013.
21. Gallimberti I. The Mechanism of the Long Spark Formation // J. Physi. Colloque C7. 1979. V. 40. No. 7. Pp. 193—250.
22. Babaeva N., Kushner M. Effect of Inhomogeneities on Streamer Propagation: I. Intersection with Isolated Bubbles and Particles // Plasma Sources Sci. and Technol. 2009. V. 18. P. 035009.
23. Ebert U. e. a. The Multiscale Nature of Streamers // Plasma Sources Sci. Technol. 2006. V. 15. Pp. 118—129.
24. Савельева Л.А., Самусенко А.В., Стишков Ю.К. Причины ветвления положительного стримера в неоднородном поле // Электронная обработка материалов. 2013. Т. 49. № 2. С. 36—47.
25. Соколова М.В., Темников А.Г. Физические предпосылки модели ветвления положительного стримера в воздухе // Вестник МЭИ. 1998. № 4. С. 34—40.
26. Верещагин И.П. О моделировании ветвления стримера // Известия академии наук. Серия «Энергетика». 2002. № 1. С. 112—125.
27. Chen Sh., Wang F., Sun Q., Zeng R. Simulation of Positive Streamers in Atmospheric Air by a Macroscopic Model with a new Branching Criterion // IEEE Trans. Dielectrics and Electrical Insulation. 2018. V. 25. No. 6. Pp. 2112—2121.
28. Briels T.M.P., Van Veldhuzen E.M., Ebert U. Positive Streamers in Air and Nitrogen of Varying Density: Experiments on Similarity Laws // J. Phys. D.: Appl. Phys. 2008. V. 41. P. 234008.
29. Heijmans L.C.J. e. a. Streamers in Air Splitting Into Three Branches // A Letters J. Exploring the Frontiers of Phys. 2018. V. 108. P. 25002.
30. Железняк М.Б., Мнацаканян А.Х., Сизых С.В. Фотоионизация смесей азота и кислорода излучением газового разряда // Теплофизика высоких температур. 1982. Т. 20. № 3. С. 423—428.
31. Alexandrov N.L. Bazelyan E.M. The Peculiarities of Long-streamer Propagation in Gases with Strong Electron Attachment // Proc. XIII Intern. Conf. Gas Discharges and Their Applications. Glasgow, 2000. V. 1. Pp. 430—433
---
Для цитирования: Белогловский А.А., Савельев И.О., Лебедева Н.А. Оценка перспективности направлений теоретических исследований стримеров в воздухе (обзор) // Вестник МЭИ. 2024. № 1. С. 28—35. DOI: 10.24160/1993-6982-2024-1-28-35
#
1. Bortnik I.M. i dr. Elektrofizicheskie Osnovy Tekhniki Vysokikh Napryazheniy. M: Izd-vo MEI, 2018. (in Russian).
2. Rayzer Yu.P. Fizika Gazovogo Razryada. Dolgoprudnyy: Izdat. Dom «Intellekt», 2009. (in Russian).
3. Lehtinen N.G. Physics and Mathematics of Electric Streamers. Radiophysics and Quantum Electronics. 2021;64;1:11—25.
4. Gilber A., Bastien F. Fine Structure of Streamers. J. Phys. D: Appl. Phys. 1989;22:1078—1082.
5. Li Yu. e. a. Characterizing Streamer Branching in N2–O2 Mixtures by 2D Peak-finding. Plasma Sources Sci. Technol. 2020;29:03LT02.
6. Gallimberti I. Impulse Corona Simulation for Flue Gas Treatment. Pure & Appl. Chem. 1988;60;5:663—674.
7. Akter M. e. a. Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer. Int. J. Mol. Sci. 2020;21:8321.
8. Măgureanu M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma. Plasma Chem. Plasma Proc. 2018;38;5:989—1001.
9. Filimonova E.A. e. a. Formation of Combustion Wave in Lean Propane-air Mixture with a Non-uniform Chemical Reactivity Initiated by Nanosecond Streamer Discharges in the HCCI Engine. Combustion and Flame. 2020;215:401—416.
10. Chernukhin A.Yu., Knyazev V.V. Strimernaya Korona so Sterzhnevykh Molniepriemnikov. Vostochno-Evropeyskiy Nauchnyy Zhurnal. 2016;6;2:39—46. (in Russian).
11. Beloglovskiy A.A., Rushal'shchikova A.V. Izuchenie Vetvleniya Katodonapravlennogo Strimera v Vozdukhe Posredstvom Trekhmernoy Matematicheskoy Modeli. Elektrichestvo. 2016;7:16—23. (in Russian).
12. Beloglovskiy A.A., Vereshchagin I.P. Trekhmernoe Matematicheskoe Modelirovanie Strimernogo Razryada v Vozdukhe s Uchetom Vetvleniya: Ekonomichnyy Raschet Elektricheskogo Polya. Elektrichestvo. 2011;11:17—24. (in Russian).
13. Yurgelenas Yu.V. Algoritm Rascheta Dinamiki Zaryazhennykh Chastits v Diffuzionno-dreyfovoy Modeli Strimera. Fiziko-tekhnicheskie Problemy Peredachi Elektricheskoy Energii: Sb. Nauch. Statey. M.: Izd-vo MEI, 1998:121—160. (in Russian).
14. Tarasenko V.F. Izmerenie i Modelirovanie Skorosti Strimera pri Proboe Vozdukha v Rezko Neodnorodnom Elektricheskom Pole. Fizika Plazmy. 2020;46;3:273—280. (in Russian).
15. Semenov I.L., Weltmann K.-D. A Spectral Element Method for Modelling Streamer Discharges in Low-temperature Atmospheric-pressure Plasmas. J. Computational Phys. 2022;465:111378.
16. Nijdam S., Teunissen J., Ebert U. The Physics of Streamer Discharge Phenomena. Plasma Sources Sci. Technol. 2020;29:103001.
17. Beloglovskiy A.A., Belousov S.V., Galimova A.V. Issledovanie v Vychislitel'nykh Eksperimentakh Osobennostey Formirovaniya i Razvitiya Strimerov v Vozdukhe. Vestnik MEI. 2022;6:61—67. (in Russian).
18. Vereshchagin I.P. Vliyanie Fotoionizatsii na Rasprostranenie Katodonapravlennykh Strimerov v Vozdukhe. Vestnik MEI. 2012;2:67—72. (in Russian).
19. Papageorgiou L., Georghiou G.E., Metaxas A.C. Three-dimensional Numerical Modeling of Gas Discharges at Atmospheric Pressure Incorporating Photoionization Phenomena. J. Phys. D: Appl. Phys. 2011;44:045203.
20. Bagheri B., Teunissen J. The Effect of the Stochasticity of Photoionization on 3D Streamer Simulations. Plasma Sources Sci. Technol. 2019;28:045013.
21. Gallimberti I. The Mechanism of the Long Spark Formation. J. Physi. Colloque C7. 1979;40;7:193—250.
22. Babaeva N., Kushner M. Effect of Inhomogeneities on Streamer Propagation: I. Intersection with Isolated Bubbles and Particles. Plasma Sources Sci. and Technol. 2009;18:035009.
23. Ebert U. e. a. The Multiscale Nature of Streamers. Plasma Sources Sci. Technol. 2006;15:118—129.
24. Savel'eva L.A., Samusenko A.V., Stishkov Yu.K. Prichiny Vetvleniya Polozhitel'nogo Strimera v Neodnorodnom Pole. Elektronnaya Obrabotka Materialov. 2013;49;2:36—47. (in Russian).
25. Sokolova M.V., Temnikov A.G. Fizicheskie Predposylki Modeli Vetvleniya Polozhitel'nogo Strimera v Vozdukhe. Vestnik MEI. 1998;4:34—40. (in Russian).
26. Vereshchagin I.P. O Modelirovanii Vetvleniya Strimera. Izvestiya Akademii Nauk. Seriya «Energetika». 2002;1:112—125. (in Russian).
27. Chen Sh., Wang F., Sun Q., Zeng R. Simulation of Positive Streamers in Atmospheric Air by a Macroscopic Model with a new Branching Criterion. IEEE Trans. Dielectrics and Electrical Insulation. 2018;25;6:2112—2121.
28. Briels T.M.P., Van Veldhuzen E.M., Ebert U. Positive Streamers in Air and Nitrogen of Varying Density: Experiments on Similarity Laws. J. Phys. D.: Appl. Phys. 2008;41:234008.
29. Heijmans L.C.J. e. a. Streamers in Air Splitting Into Three Branches. A Letters J. Exploring the Frontiers of Phys. 2018;108:25002.
30. Zheleznyak M.B., Mnatsakanyan A.Kh., Sizykh S.V. Fotoionizatsiya Smesey Azota i Kisloroda Izlucheniem Gazovogo Razryada. Teplofizika Vysokikh Temperatur. 1982;20;3:423—428. (in Russian).
31. Alexandrov N.L. Bazelyan E.M. The Peculiarities of Long-streamer Propagation in Gases with Strong Electron Attachment. Proc. XIII Intern. Conf. Gas Discharges and Their Applications. Glasgow, 2000;1:430—433
---
For citation: Beloglovsky A.A., Savelyev I.O., Lebedeva N.A. The Prospects of Theoretical Lines for Studying Streamers in Air (Review). Bulletin of MPEI. 2024;1:28—35. (in Russian). DOI: 10.24160/1993-6982-2024-1-28-35
Published
2023-10-18
Section
Electric Power Industry (Technical Sciences) (2.4.3)