An Open-access Virtual Electric Drive Education Research Laboratory

  • Лев [Lev] Николаевич [N.] Рассудов [Rassudov]
  • Алина [Alina] Александровна [A.] Корунец [Korunets]
Keywords: engineering education, distance education technologies, virtual laboratories, robotic systems, fault diagnostics, simulation, cloud service, digital twin, industrial applications, energy saving

Abstract

Laboratory works are an integral part of educating the engineering students. In some cases, in-person training on real equipment may be either limited or insufficiently effective. This may be due to difficulties in accessing the equipment, its rigidly fixed functionality, the growing demand for distance education forms, as well as safety considerations. Modern information technology means make it possible to solve these problems to a significant degree through the introduction of remote access, virtual reality, digital twins, and other technologies. The article presents an example of an open-access virtual laboratory deployed on a server. Its key feature is that it simulates transients in real time, so that a student gets the feeling of working on real equipment. In addition, each student can be given an individual set of virtual equipment for studying, tuning, or diagnostics, which would be impossible to set up in a real laboratory. The virtual lab functionality corresponds to a significant degree to the real equipment at the Laboratory of Energy Saving Electric Drives within the Department of Automated Electric Drives at the National Research University Moscow Power Engineering Institute. The new virtual laboratories have positively proven themselves not only as an effective means to conduct classes remotely, but also as an additional tool to improve the quality of in-person training, which opens new opportunities for research in addition to experiments on real benches. The access to the virtual laboratory is free of charge and is available online to everyone who wants to master the basics of electric drives: they are launched in the browser by entering the corresponding web page.

Information about authors

Лев [Lev] Николаевич [N.] Рассудов [Rassudov]

Ph.D. (Techn.), Assistant Professor of Automated Electric Drive Dept., NRU MPEI, e-mail: RassudovLN@mpei.ru

Алина [Alina] Александровна [A.] Корунец [Korunets]

Engineer of Automated Electric Drive Dept., NRU MPEI, e-mail: KorunetsAA@mpei.ru

References

1. Открытая виртуальная учебная лаборатория исследования электрического привода [Электрон. ресурс] http://EPLabZ.ru (дата обращения 22.03.2023).
2. Richter T., Boehringer D., Jeschke S. LiLa: a European Project on Networked Experiments // Automation, Communication and Cybernetics in Science and Engineering 2009/2010. N.-Y.: Springer Intern. Publ., 2011.
3. Harward V.J. e. a. The iLab Shared Architecture: a Web Services Infrastructure to Build Communities of Internet Accessible Laboratories // Proc. IEEE. 2008. V. 96. No. 6. Pp. 931—950.
4. Zaman M.A., Neustock L.T., Hesselink L. iLabs as an Online Laboratory Platform: a Case Study at Stanford University During the COVID-19 Pandemic // Proc. IEEE Global Engineering Education Conf. Vienna, 2021. Pp. 1615—1623.
5. Gustavsson I., Zackrisson J., Håkansson L., Claesson L., Lagö T. The VISIR Project — an Open Source Software Initiative for Distributed Online Laboratories // Proc. of Annual Int. Conf. Remote Engineering and Virtual Instrumentation. Porto, 2007. Pp. 1—6.
6. Ortelt T., Terkowsky C. Community Working Group Remote-labore in Deutschland Projekte. Gemeinsamkeiten, Unterschiede. 2020.
7. Montuori L., Alcazar-Ortega M., Vargas-Salgado C., Bastida Molina P. Methodology for the Implementation of E-learning Class During the COVID-19 // Proc. Intern. Conf. Innovation, Documentation and Education. Valencia, 2020.
8. Bezerra J. Feedback of Engineering Students about Remote Classes During Covid-19 Pandemic // Proc. XIV Annual Intern. Conf. Education, Research and Innovation, 2021. Pp. 754—758.
9. Jackowicz S., Sahin I. Online Education during the COVID-19 Pandemic: Issues, Benefits, Challenges, and Strategies. Washington: ISTES Organization, 2021.
10. Argüello E. The Impact of «Going Virtual» on Engineering Education During the COVID-19 Pandemic: a Student-centered Study in Colombia // Intern. J. Engineering Education 2021. V. 37(6). Pp. 1511—1517.
11. Rassudov L., Korunets A. COVID-19 Pandemic Challenges for Engineering Education // Proc. XI Intern. Conf. Electrical Power Drive Systems. St. Petersburg, 2020. Pp. 1—3.
12. Auer M.E. Virtual Lab Versus Remote Lab // Proc. XX World Conf. Open Learning and Distance Education. Dusseldorf, 2001. Pp. 1—9.
13. Moudgalya K.M., Arora I. A Virtual Laboratory for Distance Education // Proc. Intern. Conf. Technology for Education. Mumbai, 2010. Pp. 190—193.
14. Poojary D.S., Noronha S.B. Virtual labs in Engineering Education: Implementation Using Free and Open Source Resources // Proc. IEEE Intern. Conf. Technol. Enhanced Education. Amritapuri, 2012. Pp. 1—4.
15. Mikhaylov N., Chernov D. From Virtual Lab to Virtual Development Lab // IFAC Proc. 2012. V. 45(11). Pp. 177—182.
16. Henker M., Kelber K. Virtualizing Electrical Engineering Teaching Labs [Электрон. ресурс] https://www.mathworks.com/company/newsletters/articles/virtualizing-electrical-engineering-teaching-labs.html (дата обращения 22.03.2023).
17. Rassudov L., Akmurzin E., Korunets A., Osipov D. Engineering Education and Cloud-based Digital Twins for Electric Power Drive System Diagnostics // Proc. 28th Intern. Workshop Electric Drives: Improving Reliability of Electric Drives. Moscow, 2021. Pp. 1—3.
18. Baluta G., Horga V., Lazar C. Implementation of a Virtual Laboratory for Low Power Electrical Drives // Proc. XIII Intern. Power Electronics and Motion Control Conf. Poznan, 2008. Pp. 2043—2048.
19. Vodovozov V., Raud Z., Gevorkov L. Experiences with Remote Labs in Electrical Drive // Proc. 55th Intern. Sci. Conf. Power and Electrical Eng. of Riga Techn. University. Riga, 2014. Pp. 88—93.
20. Троицкий Д.И. Виртуальные лабораторные работы в инженерном // Качество. Инновации. Образование. 2008. № 2(33). С. 67—71.
21. Ильинский Н.Ф. Основы электропривода. М. Изд-во МЭИ, 2007.
22. Учтех-Профи [Офиц. сайт] https://labstand.ru/ (дата обращения 01.05.2022).
23. Производственное Объединение «Зарница» [Офиц. сайт] https://zarnitza.ru/ (дата обращения 01.05.2022).
24. Компания «Лабораторные Системы» [Офиц. сайт] https://labsys.ru/ (дата обращения 01.05.2022).
25. Rassudov L., Korunets A. Virtual Labs: an Effective Engineering Education Tool for Remote Learning and not Only // Proc. 29th Intern. Workshop Electric Drives: Advances in Power Electronics for Electric Drives. Moscow, 2022. Pp. 1—4.
26. Свид-во о гос. регистрации программы для ЭВМ № 2022681332 РФ. Виртуальная учебная лаборатория исследования электрического привода / Рассудов Л.Н., Корунец А.А.
---
Для цитирования: Рассудов Л.Н., Корунец А.А. Открытая виртуальная учебная лаборатория исследования электрического привода // Вестник МЭИ. 2024. № 1. С. 21—27. DOI: 10.24160/1993-6982-2024-1-21-27.
#
1. Otkrytaya Virtual'naya Uchebnaya Laboratoriya Issledovaniya Elektricheskogo Privoda [Elektron. Resurs] http://EPLabZ.ru (Data Obrashcheniya 22.03.2023). (in Russian).
2. Richter T., Boehringer D., Jeschke S. LiLa: a European Project on Networked Experiments. Automation, Communication and Cybernetics in Science and Engineering 2009/2010. N.-Y.: Springer Intern. Publ., 2011.
3. Harward V.J. e. a. The iLab Shared Architecture: a Web Services Infrastructure to Build Communities of Internet Accessible Laboratories. Proc. IEEE. 2008;96;6:931—950.
4. Zaman M.A., Neustock L.T., Hesselink L. iLabs as an Online Laboratory Platform: a Case Study at Stanford University During the COVID-19 Pandemic. Proc. IEEE Global Engineering Education Conf. Vienna, 2021:1615—1623.
5. Gustavsson I., Zackrisson J., Håkansson L., Claesson L., Lagö T. The VISIR Project — an Open Source Software Initiative for Distributed Online Laboratories. Proc. of Annual Int. Conf. Remote Engineering and Virtual Instrumentation. Porto, 2007:1—6.
6. Ortelt T., Terkowsky C. Community Working Group Remote-labore in Deutschland Projekte. Gemeinsamkeiten, Unterschiede. 2020.
7. Montuori L., Alcazar-Ortega M., Vargas-Salgado C., Bastida Molina P. Methodology for the Implementation of E-learning Class During the COVID-19. Proc. Intern. Conf. Innovation, Documentation and Education. Valencia, 2020.
8. Bezerra J. Feedback of Engineering Students about Remote Classes During Covid-19 Pandemic. Proc. XIV Annual Intern. Conf. Education, Research and Innovation, 2021:754—758.
9. Jackowicz S., Sahin I. Online Education during the COVID-19 Pandemic: Issues, Benefits, Challenges, and Strategies. Washington: ISTES Organization, 2021.
10. Argüello E. The Impact of «Going Virtual» on Engineering Education During the COVID-19 Pandemic: a Student-centered Study in Colombia. Intern. J. Engineering Education 2021;37(6):1511—1517.
11. Rassudov L., Korunets A. COVID-19 Pandemic Challenges for Engineering Education. Proc. XI Intern. Conf. Electrical Power Drive Systems. St. Petersburg, 2020:1—3.
12. Auer M.E. Virtual Lab Versus Remote Lab. Proc. XX World Conf. Open Learning and Distance Education. Dusseldorf, 2001:1—9.
13. Moudgalya K.M., Arora I. A Virtual Laboratory for Distance Education. Proc. Intern. Conf. Technology for Education. Mumbai, 2010:190—193.
14. Poojary D.S., Noronha S.B. Virtual labs in Engineering Education: Implementation Using Free and Open Source Resources. Proc. IEEE Intern. Conf. Technol. Enhanced Education. Amritapuri, 2012:1—4.
15. Mikhaylov N., Chernov D. From Virtual Lab to Virtual Development Lab. IFAC Proc. 2012;45(11):177—182.
16. Henker M., Kelber K. Virtualizing Electrical Engineering Teaching Labs [Elektron. Resurs] https://www.mathworks.com/company/newsletters/articles/virtualizing-electrical-engineering-teaching-labs.html (Data Obrashcheniya 22.03.2023).
17. Rassudov L., Akmurzin E., Korunets A., Osipov D. Engineering Education and Cloud-based Digital Twins for Electric Power Drive System Diagnostics. Proc. 28th Intern. Workshop Electric Drives: Improving Reliability of Electric Drives. Moscow, 2021:1—3.
18. Baluta G., Horga V., Lazar C. Implementation of a Virtual Laboratory for Low Power Electrical Drives. Proc. XIII Intern. Power Electronics and Motion Control Conf. Poznan, 2008:2043—2048.
19. Vodovozov V., Raud Z., Gevorkov L. Experiences with Remote Labs in Electrical Drive. Proc. 55th Intern. Sci. Conf. Power and Electrical Eng. of Riga Techn. University. Riga, 2014:88—93.
20. Troitskiy D.I. Virtual'nye Laboratornye Raboty v Inzhenernom. Kachestvo. Innovatsii. Obrazovanie. 2008;2(33):67—71. (in Russian).
21. Il'inskiy N.F. Osnovy Elektroprivoda. M. Izd-vo MEI, 2007. (in Russian).
22. Uchtekh-Profi [Ofits. Sayt] https://labstand.ru/ (Data Obrashcheniya 01.05.2022). (in Russian).
23. Proizvodstvennoe Obedinenie «Zarnitsa» [Ofits. Sayt] https://zarnitza.ru/ (Data Obrashcheniya 01.05.2022). (in Russian).
24. Kompaniya «Laboratornye Sistemy» [Ofits. Sayt] https://labsys.ru/ (Data Obrashcheniya 01.05.2022). (in Russian).
25. Rassudov L., Korunets A. Virtual Labs: an Effective Engineering Education Tool for Remote Learning and not Only. Proc. 29th Intern. Workshop Electric Drives: Advances in Power Electronics for Electric Drives. Moscow, 2022:1—4.
26. Svid-vo o Gos. Registratsii Programmy dlya EVM № 2022681332 RF. Virtual'naya Uchebnaya Laboratoriya Issledovaniya Elektricheskogo Privoda. Rassudov L.N., Korunets A.A. (in Russian)
---
For citation: Rassudov L.N., Korunets A.A. An Open-access Virtual Electric Drive Education Research Laboratory. Bulletin of MPEI. 2024;1:21—27. (in Russian). DOI: 10.24160/1993-6982-2024-1-21-27
Published
2023-10-18
Section
Electrical Complexes and Systems (2.4.2)