Multiphysics Simulation of a Low Voltage DC Arc
Abstract
In the modern world, the industrial equipment power capacity is rapidly growing, with circuit breakers accounting for the largest part of the equipment protection devices. This entails a growth of short-circuit currents, which, in turn, generates the need to enhance the reliability of apparatuses and increase their breaking capacity.
When the electrical apparatus contacts are opened, an electric arc occurs due to ionization of the space between them. The gap between the contacts remains conductive during the entire process, and the passage of current in the circuit does not stop. For the gap to become ionized and arc to ignite, it is necessary that the voltage between the contacts was about 15 – 30 V, and the current in the circuit was 80 – 100 mA. The arc ignites and extinguishes quickly, and in a small volume of the chamber. Modeling of these phenomena will make it possible to get a deeper insight into these processes and is one of the urgent problems of modern apparatus engineering.
Simulation of a low-voltage DC arc by the finite element method is considered. For carrying out simulation, the modern well-proven COMSOL Multiphysics software was used, the application of which enables problems to be solved within a single model. The complete mathematical model includes various physical subsystems with multiphysical links.
References
2. Tarczynski W., Daskiewicz T. Switching Arc Simulation // Przeglad Elektrotechniczny. 2012. V. 88(7). Pp. 60—64.
3. Ruempler C., Zacharias A., Stammberger H.Low-voltage Circuit Breaker Arc Simulation Including Contact Arm Motion // Proc. 27th Intern. Conf. Electrical Contacts. Dresden, 2014. Pp. 1—5.
4. Fei Y. e. a. Low-voltage Circuit Breaker Arcs — Simulation and Measurements // J. Phys. D: Appl. Phys. 2013. V. 46(27). P. 273001.
5. Li J. e. a. Research on the Effect of Magnetic Field on Micro-characteristics of Vacumm Arc During Arc Formation Process // Proc. 28th Intern. Symp. Discharges and Electrical Insulation in Vacuum. Greifswald, 2018. Pp. 295—298.
6. Chunlei L. e. a. On Novel Methods for Characterizing the Arc/contact Movement and Its Relation with the Current/voltage in Low-voltage Circuit Breaker // IEEE Trans. Plasma Sci. 2017. V. 45(5). Pp. 882—888.
7. Ye X., Dhotre M.T., Mantilla J.D., Kotilainen S. CFD Analysis of the Thermal Interruption Process of Gases with Low Environmental Impact in High Voltage Circuit Breakers // Proc. Electrical Insulation Conf. Seattle, 2015. Pp. 375—378.
8. Szulborski M, Łapczyński S, Kolimas Ł. Increasing Magnetic Blow-out Force by Using Ferromagnetic Side Plates inside MCB // Energies. 2022. V. 15(8). P. 2776.
9. Vasiraja N., Nagaraj P. The Effect of Material Gradient on the Static and Dynamic Response of Layered Functionally Graded Material Plate Using Finite Element Method // Bull. Polish Academy of Sci.: Techn. Sci. 2019. V. 67(4). Pp. 828—838.
10. Tarnowski P., Ostapski W. Pulse Powered Turbine Engine Concept —Numerical Analysis of Influence of Different Valve Timing Concepts on Thermodynamic Performance // Bull. Polish Academy of Sci.: Techn. Sci. 2018. V. 66(3). Pp. 373—382.
11. Nagarajan V.S., Kamaraj V., Sivaramakrishnan S. Geometrical Sensitivity Analysis Based on Design Optimization and Multiphysics Analysis of PM Assisted Synchronous Reluctance Motor. Bull. Polish Academy of Sci.: Techn. Sci. 2019. V. 67(1). Pp. 155—163.
12. Bini R., Basse N.T., Seeger M. Arc-induced Turbulent Mixing in a Circuit Breaker Model // J. Phys. D: Appl. Phys. 2011. V. 44(2). Pp. 25203—25209.
13. COMSOL Multiphysics® [Офиц. сайт] www.comsol.com (дата обращения 15.02.2023).
14. AC/DC Module User's Guide [Электрон. ресурс] https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf (дата обращения 15.02.2023). Pp. 100—299.
15. Heat Transfer Module User's Guide [Электрон. ресурс] https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf (дата обращения 15.02.2023). Pp. 147—150.
16. CFD Module User's Guide [Электрон. ресурс] https://doc.comsol.com/5.4/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf (дата обращения 15.02.2023). Pp. 119—128.
---
Для цитирования: Рыжов В.В., Ведещенков Н.А., Дергачев П.А., Молоканов О.Н., Курбатов П.А., Астафьев В.В. Мультифизическое моделирование низковольтной дуги постоянного тока // Вестник МЭИ. 2024. № 1. С. 11—20. DOI: 10.24160/1993-6982-2024-1-11-20
#
1. Shin D., Golosnoy I.O., Mcbride J.W. Arc Modelling for Switching Performance Evaluation in Low-voltage Switching Devices. Proc. 28th Intern. Conf. Electric Contacts. Edinburgh, 2016:41—45.
2. Tarczynski W., Daskiewicz T. Switching Arc Simulation. Przeglad Elektrotechniczny. 2012;88(7):60—64.
3. Ruempler C., Zacharias A., Stammberger H.Low-voltage Circuit Breaker Arc Simulation Including Contact Arm Motion. Proc. 27th Intern. Conf. Electrical Contacts. Dresden, 2014:1—5.
4. Fei Y. e. a. Low-voltage Circuit Breaker Arcs — Simulation and Measurements. J. Phys. D: Appl. Phys. 2013;46(27):273001.
5. Li J. e. a. Research on the Effect of Magnetic Field on Micro-characteristics of Vacumm Arc During Arc Formation Process. Proc. 28th Intern. Symp. Discharges and Electrical Insulation in Vacuum. Greifswald, 2018:295—298.
6. Chunlei L. e. a. On Novel Methods for Characterizing the Arc/contact Movement and Its Relation with the Current/voltage in Low-voltage Circuit Breaker. IEEE Trans. Plasma Sci. 2017;45(5):882—888.
7. Ye X., Dhotre M.T., Mantilla J.D., Kotilainen S. CFD Analysis of the Thermal Interruption Process of Gases with Low Environmental Impact in High Voltage Circuit Breakers. Proc. Electrical Insulation Conf. Seattle, 2015:375—378.
8. Szulborski M, Łapczyński S, Kolimas Ł. Increasing Magnetic Blow-out Force by Using Ferromagnetic Side Plates inside MCB. Energies. 2022;15(8):2776.
9. Vasiraja N., Nagaraj P. The Effect of Material Gradient on the Static and Dynamic Response of Layered Functionally Graded Material Plate Using Finite Element Method. Bull. Polish Academy of Sci.: Techn. Sci. 2019;67(4):828—838.
10. Tarnowski P., Ostapski W. Pulse Powered Turbine Engine Concept —Numerical Analysis of Influence of Different Valve Timing Concepts on Thermodynamic Performance. Bull. Polish Academy of Sci.: Techn. Sci. 2018;66(3):373—382.
11. Nagarajan V.S., Kamaraj V., Sivaramakrishnan S. Geometrical Sensitivity Analysis Based on Design Optimization and Multiphysics Analysis of PM Assisted Synchronous Reluctance Motor. Bull. Polish Academy of Sci.: Techn. Sci. 2019;67(1):155—163.
12. Bini R., Basse N.T., Seeger M. Arc-induced Turbulent Mixing in a Circuit Breaker Model. J. Phys. D: Appl. Phys. 2011;44(2):25203—25209.
13. COMSOL Multiphysics® [Ofits. Sayt] www.comsol.com (Data Obrashcheniya 15.02.2023).
14. AC/DC Module User's Guide [Elektron. Resurs] https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf (Data Obrashcheniya 15.02.2023):100—299.
15. Heat Transfer Module User's Guide [Elektron. Resurs] https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf (Data Obrashcheniya 15.02.2023):147—150.
16. CFD Module User's Guide [Elektron. Resurs] https://doc.comsol.com/5.4/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf (Data Obrashcheniya 15.02.2023):119—128
---
For citation: Ryzhov V.V., Vedeshchenkov N.A., Dergachev P.A., Molokanov O.N., Kurbatov P.A., Astafyev V.V. Multiphysics Simulation of a Low Voltage DC Arc. Bulletin of MPEI. 2024;1:11—20. (in Russian). DOI: 10.24160/1993-6982-2024-1-11-20